Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2010-Apr

New biomarkers for monitoring the levels of isothiocyanates in humans.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Anoop Kumar
Gabriele Sabbioni

키워드

요약

Isothiocyanates (ITCs) found in cruciferous vegetables have demonstrated cancer preventive activity in animals, and increased dietary intake of ITCs has been shown to be associated with a reduced cancer risk in humans. ITCs exert their cancer chemopreventive action by multiple mechanisms, for example, by modulating the activities of phase I and phase II drug metabolism enzymes, by inhibiting the cell cycle and histone deacetylase, and by causing apoptotic cell death. In cells, protein adducts account for most of total cellular ITC uptake at 4 h after treatment. The time course of this protein binding correlates well with the inhibition of proliferation and the induction of apoptosis. Animal studies have shown that glutathione conjugates are the major products of ITCs. The major urinary excretion products of ITCs in human are N-acetyl cysteine conjugates. Urinary metabolites might provide the exposure history of the last 24 h, if the urine of the full next day is collected. However, this is not feasible in large epidemiological studies. Furthermore, the mercapturic acids of ITC are not stable. Therefore, stable biomarkers are needed that reflect a larger time span of the ITC exposure history. We developed a method to determine stable (not cysteine adducts) reaction products of ITCs with albumin and hemoglobin in humans and mice. We reacted albumin with the ITCs: benzyl isothiocyanate (BITC), phenylethyl isothiocyanate (PEITC), sulforaphane (SFN), and allyl isothiocyanate (AITC). After enzymatic digestion, we found one major product with lysine using LC-MS/MS. The identity of the adducts was confirmed by comparing the analyses with synthetic standards: N(6)-[(benzylamino)carbonothioyl]lysine (BITC-Lys), N(6)-{[(2-phenylethyl)amino]carbonothioyl}lysine (PEITC-Lys), N(6)-({[3-(methylsulfinyl)propyl]amino}carbonothioyl)lysine (SFN-Lys), and N(6)-[(allylamino]carbonothioyl]lysine (AITC-Lys). The adduct levels were quantified by isotope dilution mass spectrometry using the corresponding new ITC-[(13)C(6)(15)N(2)]lysines as internal standards. The applicability of the method was tested for biological samples obtained from different experiments. In humans consuming garden cress, watercress, and broccoli and/or in mice exposed chronically to N-acetyl-S-{[(2-phenylethyl)amino]carbonothioyl}-l-cysteine, albumin and hemoglobin adducts were found. BITC-Lys, PEITC-Lys, and SFN-Lys released after enzymatic digestion of the proteins were quantified with LC-MS/MS. This new method will enable quantification of ITC adducts in blood proteins from large prospective studies about diet and cancer. Protein adducts are involved in the chemopreventive effects of ITCs. Therefore, blood protein adducts are a potential surrogate marker for the effects of ITCs at the cellular level. This new technique will improve the assessment of ITC exposure and the power of studies on the relationship between ITC intake and cancer.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge