Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2002-Nov

Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Luzia Valentina Modolo
Fernando Queiroz Cunha
Márcia Regina Braga
Ione Salgado

키워드

요약

Phytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease. The treatment of soybean cotyledons with Dpm elicitor or with sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in a high accumulation of phytoalexins. This response did not occur when SNP was replaced by ferricyanide, a structural analog of SNP devoid of the NO moiety. Phytoalexin accumulation induced by the fungal elicitor, but not by SNP, was prevented when cotyledons were pretreated with NO synthase (NOS) inhibitors. The Dpm elicitor also induced NOS activity in soybean tissues proximal to the site of inoculation. The induced NOS activity was Ca(2+)- and NADPH-dependent and was sensitive to the NOS inhibitors N(G)-nitro-L-arginine methyl ester, aminoguanidine, and L-N(6)-(iminoethyl) lysine. NOS activity was not observed in SNP-elicited tissues. An antibody to brain NOS labeled a 166-kD protein in elicited and nonelicited cotyledons. Isoflavones (daidzein and genistein), pterocarpans (glyceollins), and flavones (apigenin and luteolin) were identified after exposure to the elicitor or SNP, although the accumulation of glyceollins and apigenin was limited in SNP-elicited compared with fungal-elicited cotyledons. NOS activity preceded the accumulation of these flavonoids in tissues treated with the Dpm elicitor. The accumulation of these metabolites was faster in SNP-elicited than in fungal-elicited cotyledons. We conclude that the response of soybean cotyledons to Dpm elicitor involves NO formation via a constitutive NOS-like enzyme that triggers the biosynthesis of antimicrobial flavonoids.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge