Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2008-Jun

Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Chandra Shekhar Nautiyal
Raghavan Govindarajan
Meeta Lavania
Palpu Pushpangadan

키워드

요약

The significance of plant growth-promoting rhizobacteria (PGPR) mediated increase in antioxidant potential in vegetables is yet unknown. The plant growth-promoting bacterium Bacillus lentimorbus NRRL B-30488 (B-30488) mediated induction of dietary antioxidant in vegetables ( Trigonella foenum-graecum, Lactuca sativa, Spinacia oleracea, and Daucus carota) and fruit ( Citrus sinensis) after minimal processing (fresh, boiled, and frozen) was tested by estimating the total phenol content, level of antioxidant enzymes, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide scavenging activities along with integral radical scavenging capacity by photochemiluminescence assay and inhibition of lipid peroxidation. Minimal processing of vegetables showed that T. foenum-graecum had the highest phenol content in B-30488-treated plants followed by L. sativa, D. carota, and S. oleracea. Thermally treated vegetables T. foenum-graecum (26-114.5 GAE microg mg (-1)) had an exceptionally high total phenolic content, followed by D. carota (25.27-101.32 GAE microg mg (-1)), L. sativa (23.22-101.10 GAE microg mg (-1)), and S. oleracea (21.87-87.57 GAE microg mg (-1)). Among the vegetables and fruit used in this study for enzymatic estimation, induction of antioxidant enzymes, namely, polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and superoxidase dismutase (SOD), was observed in edible parts of T. foenum-graecum, L. sativa, S. oleracea, and D. carota, after inoculation with B-30488. The scavenging capacity of the vegetables treated with B-30488 against DPPH and superoxide anion radical activity was found to be significantly high as compared to nontreated control. Mild food processing had no adverse effect on radical scavenging capacity. Photochemiluminescence also ascertains the above findings. The ability of the plant extracts to protect against lipid peroxidation and its ability to prevent oxidation of reduced glutathione (GSH) was measured in rat liver homogenate, and the results suggested that the inoculated plant exhibited better activity in all of the screened plants. Significant increases in shoot length, root length, and dry weight, averaging 164, 132, and 135% in T. foenum-graecum, 174, 141, and 156% in L. sativa, 129, 141, and 59%, in S. oleracea, and 125, 146, and 42% in D. carota, respectively, over untreated controls, were attained in greenhouse trials. To the best of the authors' knowledge, this is the first report of PGPR-mediated induction of antioxidant enzyme activity (PPO, APX, CAT, and SOD) along with the antioxidant activity of the extracts in both in vitro (DPPH radical scavenging and superoxide scavenging) and ex vivo conditions using the rat liver tissue (percent inhibition of lipid peroxidation and prevention of oxidation of GSH) and phenolic content. The results demonstrate the PGPR-mediated induction of antioxidant level in vegetables and fruit controls oxidative damage even after minimal processing and thus is indicative of its potential as a viable substitute of synthetic antioxidants.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge