Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Complementary and Alternative Medicine 2016-May

Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in Sweet potato (Ipomoea batatas L.).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ali Ghasemzadeh
Daryush Talei
Hawa Z E Jaafar
Abdul Shukor Juraimi
Mahmud Tengku Muda Mohamed
Adam Puteh
Mohd Ridzwan A Halim

키워드

요약

BACKGROUND

Sweet potato (Ipomoea batatas L.) is one of the most important consumed crops in many parts of the world because of its economic importance and content of health-promoting phytochemicals.

METHODS

With the sweet potato (Ipomoea batatas L.) as our model, we investigated the exogenous effects of three plant-growth regulators methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA) on major phytochemicals in relation to phenylalanine ammonia lyase (PAL) activity. Specifically, we investigated the total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and total β-carotene content (TCC). Individual phenolic and flavonoid compounds were identified using ultra-high performance liquid chromatography (UHPLC). Antioxidant activities of treated plants were evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and a β-carotene bleaching assay. Anticancer activity of extracts was evaluated against breast cancer cell lines (MCF-7 and MDA-MB-231) using MTT assay.

RESULTS

TPC, TFC, TAC, and TCC and antioxidant activities were substantially increased in MeJA-, SA-, and ABA-treated plants. Among the secondary metabolites identified in this study, MeJA application significantly induced production of quercetin, kaempferol, myricetin, gallic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. Luteolin synthesis was significantly induced by SA application. Compared with control plants, MeJA-treated sweet potato exhibited the highest PAL activity, followed by SA and ABA treatment. The high DPPH activity was observed in MeJA followed by SA and ABA, with half-maximal inhibitory concentration (IC50) values of 2.40, 3.0, and 3.40 mg/mL compared with α-tocopherol (1.1 mg/mL). Additionally, MeJA-treated sweet potato showed the highest β-carotene bleaching activity, with an IC50 value of 2.90 mg/mL, followed by SA (3.30 mg/mL), ABA (3.70 mg/mL), and control plants (4.5 mg/mL). Extracts of sweet potato root treated with MeJA exhibited potent anticancer activity with IC50 of 0.66 and 0.62 mg/mL against MDA-MB-231 and MCF-7 cell lines respectively, compared to that of extracts of sweet potato treated with SA (MDA-MB-231 = 0.78 mg/mL; MCF-7 = 0.90 mg/mL) and ABA (MDA-MB-231 = 0.94 mg/mL; MCF-7 = 1.40 mg/mL). The results of correlation analysis showed that anthocyanins and flavooids are corresponding compounds in sweet potato root extracts for anticancer activity against breast cancer cell lines.

CONCLUSIONS

MeJA has great potential to enhance the production of important health-promoting phytochemicals in sweet potato.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge