Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medicine and Science in Sports and Exercise 2018-05

Postexercise Fructose-Maltodextrin Ingestion Enhances Subsequent Endurance Capacity.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ed Maunder
Tim Podlogar
Gareth A Wallis

키워드

요약

Restoring skeletal muscle and hepatic glycogen content during short-term (<6 h) recovery from prolonged exercise is pertinent for athletes seeking to maximize performance in repeated exercise bouts. Previous research suggests that coingestion of fructose-glucose carbohydrate sources augments hepatic and has equivalent effects on skeletal muscle glycogen storage during short-term recovery from prolonged exercise compared with isocaloric glucose ingestion. The aim of the present investigation was to determine whether this has a discernible effect on subsequent exercise capacity.

Eight trained endurance runners and triathletes performed two experimental trials in a single-blind, randomized, and counterbalanced crossover design. Trials involved treadmill running to exhaustion at 70% V˙O2max, a 4-h recovery with 90 g·h of glucose-maltodextrin (GLU + MAL) or fructose-maltodextrin (FRU + MAL) ingestion (1:1.5 ratio), and a second bout of treadmill running to exhaustion at 70% V˙O2max.

Exercise capacity in bout 2 was significantly greater with FRU + MAL (81.4 ± 22.3 vs 61.4 ± 9.6 min, P = 0.02), a large magnitude effect (effect size = 1.84 ± 1.12, 32.4% ± 19.9%). Total carbohydrate oxidation rates were not significantly different during bout 1 or 2 between trials, although total carbohydrate oxidized in bout 2 was significantly greater with FRU + MAL (223 ± 66 vs 157 ± 26 g, P = 0.02). Ingested carbohydrate oxidation rates were greater during bout 2 with FRU + MAL (P = 0.001). Plasma glucose and nonesterified fatty acid concentrations were not significantly different between trials. Plasma lactate concentrations were significantly greater during recovery before bout 2 with FRU + MAL (P = 0.001). Self-reported nausea and stomach fullness during bout 2 were marginally in favor of FRU + MAL.

Short-term recovery of endurance capacity was significantly enhanced with FRU + MAL versus GLU + MAL ingestion during recovery.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge