Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cystic Fibrosis 2006-Dec

Predicting hypoxia in cystic fibrosis patients during exposure to high altitudes.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Wolfgang Kamin
Birthe Fleck
Dirk-Mathias Rose
Oliver Thews
Wolfgang Thielen

키워드

요약

BACKGROUND

For patients with cystic fibrosis (CF)-related partial respiratory insufficiency and reduced arterial oxygen tension at ground level, the mild hypobaric environment on commercial jet aircraft poses the risk of severe hypoxemia. Thus, physicians should be able to estimate the extent of in-flight hypoxia.

OBJECTIVE

To derive tools for estimating the expected drop in arterial oxygen partial pressure (paO(2)) and oxygen saturation (saO(2)) in young adult CF patients with mild to moderate airway obstruction during exposure to the hypobaric conditions aboard commercial aircraft and to test the predictive power of a hypobaric chamber simulation.

METHODS

Blood gases of 12 CF patients were measured at ground level, at two altitudes in a hypobaric chamber (2000 and 3000 m) and during two 3.5-h flights at cabin altitudes of 1855 m and 1700 m. The altitude dependence of paO(2) and saO(2) in the chamber and during the flights was calculated and results were used to derive estimation equations for in-flight values.

RESULTS

In the chamber, saO(2) decreased by 0.33% per 100 m vertical ascent, and this rate increased significantly at altitudes >2000 m. Predicted saO(2) differed from in-flight value by <5%, and agreement between in-flight saO(2) decrease rate and chamber data was good. paO(2) decreased at a rate of 0.99 mm Hg/100 m in the chamber and by 1.33 mm Hg/100 m during flights. None of the subjects showed any clinical symptoms during the flights and the chamber simulation.

CONCLUSIONS

During our worst-case scenario, i.e. the hypobaric chamber simulation at 3000 m, 90% of patients tolerated paO(2) values below the commonly recommended threshold of 50 mm Hg, probably due to adaptation to chronic hypoxemia and lung function impairment. We propose the following equations for an estimation of the expected extent of in-flight hypoxemia in CF patients with mild to moderate airway obstruction and a flight duration of up to 3.5 h: -paO2[Alt]=paO2[ground] -1.33 x Alt[mm Hg], and -saO2[Alt]=saO2[ground] -0.33 x Alt [%], with Alt=altitude in 100 m. In addition to the overall clinical situation of a patient, these equations will serve as a practical supportive tool for the assessment of the fitness to fly in the primary care setting.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge