Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 2017-Feb

Production of 2-Hydroxyisobutyric Acid from Methanol by Methylobacterium extorquens AM1 Expressing (R)-3-Hydroxybutyryl Coenzyme A-Isomerizing Enzymes.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Maria-Teresa Rohde
Sylvi Tischer
Hauke Harms
Thore Rohwerder

키워드

요약

The biotechnological production of the methyl methacrylate precursor 2-hydroxyisobutyric acid (2-HIBA) via bacterial poly-3-hydroxybutyrate (PHB) overflow metabolism requires suitable (R)-3-hydroxybutyryl coenzyme A (CoA)-specific coenzyme B12-dependent mutases (RCM). Here, we characterized a predicted mutase from Bacillus massiliosenegalensis JC6 as a mesophilic RCM closely related to the thermophilic enzyme previously identified in Kyrpidia tusciae DSM 2912 (M.-T. Weichler et al., Appl Environ Microbiol 81:4564-4572, 2015, https://doi.org/10.1128/AEM.00716-15). Using both RCM variants, 2-HIBA production from methanol was studied in fed-batch bioreactor experiments with recombinant Methylobacterium extorquens AM1. After complete nitrogen consumption, the concomitant formation of PHB and 2-HIBA was achieved, indicating that both sets of RCM genes were successfully expressed. However, although identical vector systems and incubation conditions were chosen, the metabolic activity of the variant bearing the RCM genes from strain DSM 2912 was severely inhibited, likely due to the negative effects caused by heterologous expression. In contrast, the biomass yield of the variant expressing the JC6 genes was close to the wild-type performance, and 2-HIBA titers of 2.1 g liter-1 could be demonstrated. In this case, up to 24% of the substrate channeled into overflow metabolism was converted to the mutase product, and maximal combined 2-HIBA plus PHB yields from methanol of 0.11 g g-1 were achieved. Reverse transcription-quantitative PCR analysis revealed that metabolic genes, such as methanol dehydrogenase and acetoacetyl-CoA reductase genes, are strongly downregulated after exponential growth, which currently prevents a prolonged overflow phase, thus preventing higher product yields with strain AM1.

In this study, we genetically modified a methylotrophic bacterium in order to channel intermediates of its overflow metabolism to the C4 carboxylic acid 2-hydroxyisobutyric acid, a precursor of acrylic glass. This has implications for biotechnology, as it shows that reduced C1 substrates, such as methanol and formic acid, can be alternative feedstocks for producing today's commodities. We found that product titers and yields depend more on host physiology than on the activity of the introduced heterologous function modifying the overflow metabolism. In addition, we show that the fitness of recombinant strains substantially varies when they express orthologous genes from different origins. Further studies are needed to extend the overflow production phase in methylotrophic microorganisms for the implementation of biotechnological processes.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge