Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2016-Aug

Progesterone 5β-reductases/iridoid synthases (PRISE): gatekeeper role of highly conserved phenylalanines in substrate preference and trapping is supported by molecular dynamics simulations.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Jan Petersen
Harald Lanig
Jennifer Munkert
Peter Bauer
Frieder Müller-Uri
Wolfgang Kreis

키워드

요약

Vein Patterning 1 (VEP1)-encoded progesterone 5β-reductases/iridoid synthases (PRISE) belong to the short-chain dehydrogenase/reductase superfamily of proteins. They are characterized by a set of highly conserved amino acids in the substrate-binding pocket. All PRISEs are capable of reducing the activated C=C double bond of various enones enantioselectively and therefore have a potential as biocatalysts in bioorganic synthesis. Here, recombinant forms of PRISEs of Arabidopsis thaliana and Digitalis lanata were modified using site-directed mutagenesis (SDM). In rDlP5βR, a set of highly conserved amino acids in the vicinity of the catalytic center was individually substituted for alanine resulting in considerable to complete loss of enone reductase activity. F153 and F343, which can be found in most PRISEs known, are located at the outer rim of the catalytic cavity and seem to be involved in substrate binding and their role was addressed in a series of SDM experiments. The wild-type PRISE accepted progesterone (large hydrophobic 1,4-enone) as well as 2-cyclohexen-1-one (small hydrophilic 1,4-enone), whereas the double mutant rAtP5βR_F153A_F343A converted progesterone much better than the wild-type enzyme but almost lost its capability of reducing 2-cyclohexen-1-one. Recombinant Draba aizoides P5βR (rDaP5βR) has a second pair of phenylalanines at position 156 and 345 at the rim of the binding site. These two phenylalanines were introduced into rAtP5βR_F153A_F343A and the resulting quadruple mutant rAtP5βR_F153A_F343A_V156F_V345F partly recovered the ability to reduce 2-cyclohexen-1-one. These results can best be explained by assuming a trapping mechanism in which phenylalanines at the rim of the substrate-binding pocket are involved. The dynamic behavior of individual P5βRs and mutants thereof was investigated by molecular dynamics simulations and all calculations supported the 'gatekeeper' role of phenylalanines at the periphery of the substrate-binding pocket. Our findings provide structural and mechanistic explanations for the different substrate preferences seen among the natural PRISEs and help to explain the large differences in catalytic efficiency found for different types of 1,4-enones.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge