Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 1998-Aug

Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
N Matsuda
N Morita
K Matsuda
M Watanabe

키워드

요약

In an attempt to elucidate the specificity of pathways from environmental stress to cellular outcome via mitogen activated protein kinases (MAPKs) activation, we examined the responsiveness of cultured human osteoblastic periodontal ligament (PDL) cells to epidermal growth factor (EGF), hypoxia, and mechanical stress, in terms of cell proliferation, differentiation, and associated activation of three different types of MAPK. Cell proliferation was promoted in the presence of 10ng/ml of EGF or in hypoxic conditions (5% O2), whereas it was inhibited by cyclic stretch (9% strain, 6 cycles/min), which was used as a model of mechanical stress. Conversely, the alkaline phosphatase activity, a marker for osteoblastic differentiation of the cells, was increased by cyclic stretch but decreased by EGF and hypoxia. The mitogenic response of PDL cells to EGF or hypoxia was associated with the selective phosphorylation and activation of extracellular-related kinase (ERK) 1/2, while phosphorylation and activation of c-Jun N-terminal kinase (JNK) was observed in mechanical stretch loaded cells. No such changes were seen in p38 protein. These findings suggested that stress-responsive changes in proliferation and osteoblastic differentiation of PDL cells are selectively mediated by ERK 1/2 and by JNK, respectively, and that a balance between these two pathways determines the cell fate.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge