Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and chemical neuropathology

Protective effect of stobadine, a pyridoindole antioxidant, in hypoxia-reoxygenation injury of ganglionic and hippocampal neurotransmission.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
S Stolc
J Selecká

키워드

요약

Hypoxia (HYP) followed by reoxygenation (REOX) occurs frequently in the pathophysiology of the CNS. Free oxygen radicals (FOR) may participate in cerebral injury under such circumstances. Pharmacological control of the generation and/or subsequent effects of FOR by new effective compounds might contribute to the treatment of disorders such as stroke and cerebral trauma. Effects of stobadine, a pyridoindole antioxidant that is able to interact with some FOR, were analyzed on synaptic transmission in rat superior cervical ganglia and hippocampal slices during HYP-REOX procedure in vitro. The amplitude of compound action potential in the ganglion evoked by supramaximal electrical stimulation of preganglionic nerve was reduced to approximately 20% of the control value during HYP (90 min). The action potential did not recover during REOX (60 min). Stobadine (10 mM) applied before, during, and after HYP, did not change the HYP-induced inhibition; however, a significant recovery of transmission (to 78.5% +/- 8.3) occurred during REOX. A similar effect was observed in the presence of the antioxidant Trolox (0.2 mM), a derivative of alpha-tocopherol. Stobadine, in concentrations of > 30 microM inhibited ganglionic transmission in a concentration-dependent manner. HYP lasting more than 2-3 min fully depressed field action potentials evoked in hippocampal CA1 region neurons by supramaximal electrical stimulation of Schäffer collaterals. If HYP exceeded 8 min, transmission did not recover during REOX. Stobadine (10 microM) applied during HYP significantly enhanced the probability of transmission recovery in the REOX period. Some preparations recovered following HYP lasting as long as 13-15 min. On applying the compound before, during, and after HYP that lasted for 8 min, the transmission recovery was 72.6% +/- 21.8 of the control value, compared to only 16.1% +/- 12.7 in the untreated preparations. In concentrations ranging from 0.3-1.73 mM, stobadine inhibited hippocampal transmission. Stobadine proved to be an effective agent in the protection of synaptic transmission against HYP-REOX-induced injury in both neuronal preparations studied in vitro. This effect might be linked to the antioxidant and free radical scavenging effects of stobadine.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge