Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2018

RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Reiofeli A Salas-Perez
Christopher A Saski
Rooksana E Noorai
Subodh K Srivastava
Amy L Lawton-Rauh
Robert L Nichols
Nilda Roma-Burgos

키워드

요약

Amaranthus palmeri (Amaranthaceae) is a noxious weed in several agroecosystems and in some cases seriously threatens the sustainability of crop production in North America. Glyphosate-resistant Amaranthus species are widespread, prompting the use of alternatives to glyphosate such as glufosinate, in conjunction with glufosinate-resistant crop cultivars, to help control glyphosate-resistant weeds. An experiment was conducted to analyze the transcriptome of A. palmeri plants that survived exposure to 0.55 kg ha-1 glufosinate. Since there was no record of glufosinate use at the collection site, survival of plants within the population are likely due to genetic expression that pre-dates selection; in the formal parlance of weed science this is described as natural tolerance. Leaf tissues from glufosinate-treated and non-treated seedlings were harvested 24 h after treatment (HAT) for RNA-Seq analysis. Global gene expression was measured using Illumina DNA sequence reads from non-treated and treated surviving (presumably tolerant, T) and susceptible (S) plants. The same plants were used to determine the mechanisms conferring differential tolerance to glufosinate. The S plants accumulated twice as much ammonia as did the T plants, 24 HAT. The relative copy number of the glufosinate target gene GS2 did not differ between T and S plants, with 1 to 3 GS2 copies in both biotypes. A reference cDNA transcriptome consisting of 72,780 contigs was assembled, with 65,282 sequences putatively annotated. Sequences of GS2 from the transcriptome assembly did not have polymorphisms unique to the tolerant plants. Five hundred sixty-seven genes were differentially expressed between treated T and S plants. Of the upregulated genes in treated T plants, 210 were more highly induced than were the upregulated genes in the treated S plants. Glufosinate-tolerant plants had greater induction of ABC transporter, glutathione S-transferase (GST), NAC transcription factor, nitronate monooxygenase (NMO), chitin elicitor receptor kinase (CERK1), heat shock protein 83, ethylene transcription factor, heat stress transcription factor, NADH-ubiquinone oxidoreductase, ABA 8'-hydroxylase, and cytochrome P450 genes (CYP72A, CYP94A1). Seven candidate genes were selected for validation using quantitative real time-PCR. While GST was upregulated in treated tolerant plants in at least one population, CYP72A219 was consistently highly expressed in all treated tolerant biotypes. These genes are candidates for contributing tolerance to glufosinate. Taken together, these results show that differential induction of stress-protection genes in a population can enable some individuals to survive herbicide application. Elevated expression of detoxification-related genes can get fixed in a population with sustained selection pressure, leading to evolution of resistance. Alternatively, sustained selection pressure could select for mutation(s) in the GS2 gene with the same consequence.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge