Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2019-Jul

Reductions in gut microbiota‑derived metabolite trimethylamine N‑oxide in the circulation may ameliorate myocardial infarction‑induced heart failure in rats, possibly by inhibiting interleukin‑8 secretion.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Xiaoyan Li
Yongcun Sun
Xinru Zhang
Jing Wang

키워드

요약

Myocardial infarction (MI) is a common cause of chronic heart failure (HF). Increasing evidence has revealed that trimethylamine N‑oxide (TMAO), a gut‑microbiota‑derived metabolite, contributes to the pathogenesis of cardiovascular disease by promoting inflammation. Elevated levels of circulating TMAO have been reported in patients following MI and were associated with unfavorable outcomes. The present study examined whether reductions in circulating TMAO could attenuate the progression of HF in rats following MI. Sprague‑Dawley rats underwent coronary ligation to induce MI or a sham operation. Echocardiography confirmed MI and cardiac dysfunction one day following coronary ligation. MI and sham rats were then treated with either vehicle (tap water) or 1.0% 3,3‑dimethyl‑1‑butanol (DMB, a trimethylamine formation inhibitor) in tap water, for 8 weeks. At the end of the experiment, TMAO plasma levels were markedly elevated in vehicle‑treated MI rats compared with vehicle‑treated sham rats; however, TMAO plasma levels were reduced in DMB‑treated MI rats compared with vehicle‑treated MI rats. Both MI groups exhibited cardiac hypertrophy, lung congestion, left ventricular remodeling and impaired cardiac function, according to the results of anatomical analysis, echocardiography and left ventricular hemodynamics; however, these manifestations of MI‑induced HF were significantly improved in DMB‑treated MI rats compared with vehicle‑treated MI rats. The plasma levels of the chemokine interleukin (IL)‑8, and cardiac expression of IL‑8 and its receptors were significantly increased in vehicle‑treated MI rats compared with vehicle‑treated sham rats; however, these were normalized in DMB‑treated MI rats. In addition, elevated TMAO plasma level was positively correlated with increased IL‑8 plasma level in MI groups. Notably, DMB treatment of sham rats also reduced plasma TMAO, but did not alter other parameters. These results indicated that reducing circulating TMAO may ameliorate the development of chronic HF following MI in rats, potentially by inhibiting IL‑8 secretion. The results from the present study suggested that inhibition of TMAO synthesis may be considered as a novel therapeutic approach for the prevention and treatment of patients with chronic MI‑induced HF.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge