Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2015-Jan

Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: effect of bioaugmentation and phytoextraction.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
D Huguenot
P Bois
J Y Cornu
K Jezequel
M Lollier
T Lebeau

키워드

요약

The use of plants and microorganisms to mitigate sediment contaminated by copper was studied in microcosms that mimic the functioning of a stormwater basin (SWB) connected to vineyard watershed. The impact of phytoremediation and bioaugmentation with siderophore-producing bacteria on the fate of Cu was studied in two contrasted (batch vs. semi-continuous) hydraulic regimes. The fate of copper was characterised following its discharge at the outlet of the microcosms, its pore water concentration in the sediment, the assessment of its bioaccessible fraction in the rhizosphere and the measurement of its content in plant tissues. Physico-chemical (pH, redox potential) and biological parameters (total heterotrophic bacteria) were also monitored. As expected, the results showed a clear impact of the hydraulic regime on the redox potential and thus on the pore water concentration of Cu. Copper in pore water was also dependent on the frequency of Cu-polluted water discharges. Repeated bioaugmentation increased the total heterotrophic microflora as well as the Cu bioaccessibility in the rhizosphere and increased the amount of Cu extracted by Phragmites australis by a factor of ~2. Sugar beet pulp, used as a filter to avoid copper flushing, retained 20% of outcoming Cu and led to an overall retention of Cu higher than 94% when arranged at the outlet of microcosms. Bioaugmentation clearly improved the phytoextraction rate of Cu in a small-scaled SWB designed to mimic the functioning of a full-size SWB connected to vineyard watershed. Highlights: Cu phytoextraction in constructed wetlands much depends on the hydraulic regime and on the frequency of Cu-polluted water discharges. Cu phytoextraction increases with time and plant density. Cu bioaccessibility can be increased by bioaugmentation with siderophore-producing bacteria.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge