Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2019-Jun

Small-scale interaction of iron and phosphorus in flooded soils with rice growth.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Yu Wang
Jia-Hui Yuan
Hao Chen
Xu Zhao
Dengjun Wang
Shen-Qiang Wang
Shi-Ming Ding

키워드

요약

In the rhizosphere of flooded paddy soils, the solubilization, efflux, and uptake of phosphorus (P) are highly intertwined with iron (Fe) redox cycling. However, the direct observation of Fe-P coupling in the rhizosphere is challenging. This study combined high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques to capture the one-dimensional distributions of soluble reactive P (SRP), soluble Fe(II), and labile P and Fe in the root zone of rice (Oryza sativa L.), respectively. The results show a depletion of soluble/labile P and Fe concentrations around the rice root zone, compared to anaerobic bulk soils that have two different soil Olsen-P levels. Two-dimensional (2D) measurements of DGT-labile P concentrations exhibited similar but stronger trends of P depletion due to uptake of P from soil solids. In low-P soil treatment, 97.8% soluble Fe(II) was depleted in the rice root zone relative to bulk soil, and a 540% enrichment of total Fe in Fe plaques appeared in comparison to that in high-P soil. This demonstrated that the rice plant showed an adaptive metabolic reaction to combat P deficiency in low-P soil by increasing Fe plaque formation. This reaction directly resulted in stronger depletion of P in low-P soil, as indicated by the results of 2D measurements of DGT-labile P concentrations. Moreover, the significant (P < 0.001, R2 = 0.175-0.951) positive corrections between SRP vs. soluble Fe(II), and DGT-labile P vs. Fe were observed in combination with pronounced peaks at the same position in the rice root zone, thus verifying that the cycling of Fe dictated P depletion. A notably lower value of the DGT-labile Fe/P ratio was found in high-P soil, which indicates a relatively higher risk of P release compared to that in low-P soil.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge