Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant and Cell Physiology 2013-Sep

Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Fu-Yuan Zhu
Lei Li
Pui Ying Lam
Mo-Xian Chen
Mee-Len Chye
Clive Lo

키워드

요약

A sorghum pathogen-inducible gene predicted to encode a simple extracellular leucine-rich repeat (LRR) protein SbLRR2 was previously isolated. LRR was the only domain identified in SbLRR2 and its homologous sequences. Phylogenetic analysis revealed that they are distinct from the simple extracellular LRR proteins reported previously. Agrobacterium-mediated transient expression in tobacco leaf cells demonstrated that the SbLRR2-EYFP (enhanced yellow fluorescent protein) fusion protein was targeted to the extracellular space. Transgenic analysis of SbLRR2 revealed its role in enhancing lead [Pb(II)] tolerance in Arabidopsis. Consequently, SbLRR2-overexpressing lines were found to show alleviated Pb(II)-induced root inhibition, lower levels of Pb(II) accumulation and enhanced transcription of AtPDR12 which encodes a plasma membrane ATP-bind cassette (ABC)-type transporter formerly shown to contribute to Pb(II) detoxification. However, all the Pb(II) tolerance responses were abolished when SbLRR2 was overexpressed in an atpdr12 T-DNA insertion line. The extracellular localization of SbLRR2 was also shown to be essential for the Pb(II) phenotypes and AtPDR12 up-regulation. Taken together, SbLRR2 appears to mediate Pb(II) tolerance through the elevation of AtPDR12 expression in transgenic Arabidopsis, thus activating a glutathione-independent mechanism for detoxification. Further investigations revealed the Pb(II)-induced transcriptional activation of SbLRR2 and several highly conserved AtPDR12 homologs in sorghum seedlings, suggesting the possibility of a common molecular mechanism for Pb(II) tolerance in diverse plant species.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge