Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2000-Jan

Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
A. Duquesnay
J. L. Dupouey
A. Clement
E. Ulrich
F. Le Tacon

키워드

요약

Foliar mineral concentration may provide a basis for monitoring the consequences of long-term environmental changes, such as eutrophication and acidification of soils, or increase in atmospheric CO(2) concentration. However, analytical drifts and inter-tree and year-to-year variations may confound environmental effects on long-term changes in foliar mineral concentration. We have characterized the relative effects of these potentially confounding factors on foliar carbon, nitrogen, phosphorus, calcium, potassium, magnesium and manganese concentrations in 118 pure beech (Fagus sylvatica L.) stands, sampled in 1969-71 and 1996-97. Interannual fluctuations of these elements were quantified in a subset of six beech stands monitored for 5 years. Intercalibration between the methods used at each sampling period for nitrogen and phosphorus analyses showed significant, but low, relative differences (0.8 and 3.3% for N and P, respectively). Based on inter-tree variability, elements could be arranged in four groups: C (constant), N and P (low variability), K and Ca (medium variability), Mn and Mg (high variability). Inter-tree coefficients of variation were 2, 6, 8, 15, 18, 22 and 27%, respectively. Year-to-year fluctuations increased in the order N, P, Mg, K, Ca, and Mn coefficients of variation of 4, 4, 7, 9, 11, 15 and 29%, respectively). Between the two sampling periods, foliar N concentration increased 12%, whereas decreases were observed for P (-23%), Mg (-38%) and Ca (-16%). Ratios of N/P, N/K and N/Mg increased by 42, 19 and 77%, respectively. These changes were larger than the interannual variations for P, Mg, N/P, N/Mg and Mg/Ca. Decreasing concentrations of P and cations were particularly marked for trees growing on acidic soils, whereas the positive N trend did not depend on soil type. Both increasing atmospheric CO(2) concentrations and acidification of forest soils could contribute to decreasing P and cation concentrations in foliage. The increase in foliar N concentration with time suggests a nitrogen deposition effect. Whatever the causes of these changes, the large shift in element ratios indicates an accelerating imbalance between nitrogen and cation status.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge