Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Computer-Aided Drug Design 2018

Structural Optimization of Mangiferin Binding to Cancer Molecular Targets: A Guide for Synthetic Derivatization.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Bamigboye J Taiwo
Olujide O Olubiyi
Fanie R van Heerden

키워드

요약

BACKGROUND

Nigerian medicinal plants have been demonstrated to be veritable source of lead compounds for drug discovery efforts. One such example is mangiferin. Mangiferin was originally isolated from the Nigerian plant Ceiba pentandra (Mombacaceae), after which its structure was elucidated with the aid of spectroscopy. Mangiferin, a xanthone glycoside, has also been reported in certain other plant families including Gentianaceae and Anacardiaceae. In certain other climes and different parts of the world, folkloric and traditional medicine has extensively employed Mangifera indica (another source of mangiferin) in treating different diseases. For many of such cultural uses carefully designed experimental investigations have been conducted confirming mangiferin's efficacies in those different pathologies which have included but not limited to cytotoxic as well as chemopreventive properties in selected cancer cell lines.

METHODS

In this study, computational techniques were employed to profile the interaction of the xanthone glycoside at the atomistic level against nine selected molecular targets with clinical relevance in tumorigenesis. In attempt to investigate the potential of the mangiferin structure as a viable starting point for synthetic exploration of mangiferin-based analogs, extensive structural modifications were performed.

CONCLUSIONS

By analyzing the resulting structure-energetic pattern, critical points capable of improving mangiferin interaction with the profiled targets were identified. The outcome of this study provides both direction and impetus for synthetic derivitization of the mangiferin molecule into novel optimized inhibitors for anticancer lead development.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge