Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer 2018

Studying the in Silico Effect of Ellagic Acid on HIF-2α to Improve Efficacy of Anticancer Therapy.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Vidhula Ahire
Devashish Das
Shashank Arora
Anurag Kumar
Guruprasad Ramakrishna
Kaushala Mishra

키워드

요약

The hypoxic tumor microenvironment is one of the major causes of the enhanced chemoresistant and radioresistant behavior of cancer cells. Therefore, the hypoxia-induced factor (HIF) pathway can be endorsed, for not only the malignant phenotype of the cells, but also its metastatic potential. Many drugs targeting the HIF pathways have failed in the clinical setting to demonstrate therapeutic efficacy. Such failures occur due to lack of specificity or redundancy in the complexity of tumor signaling/metabolism that can overcome the inhibitory effects. Another important factor is the letdown of the compound that can be accredited to lack of patient selection in the trials. Although many clinical trials have evaluated the efficacy of anticancer therapeutics and examined their effects on HIF levels, patients were not selected based on their HIF expression levels. If patients do not have elevated levels of HIF, then the therapeutics that target the HIF pathway may be less effective. In the present work, we have targeted HIF-2α of the HIF pathway. Ellagic acid (EA), a well-known anticancer compound and radiosensitizer, is used to inhibit the activity of HIF-2α. Our results show a very unique binding of EA with HIF-2α. Such new agents should be used in combination therapy and will hopefully overcome the resistance that may develop during initial treatment if the patient is identified to have enhanced expression of HIF-2α. Molecular dynamics studies followed solvation free energy calculations (molecular mechanics Poisson-Boltzmann surface area) for understanding the binding stability and per residue contribution. Our in silico data look promising and EA should be studied more in in vitro and in vivo for further analysis of its efficacy.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge