Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microorganisms 2019-Dec

The Non-Simultaneous Enhancement of Phosphorus Acquisition and Mobilization Respond to Enhanced Arbuscular Mycorrhization on Maize (Zea mays L.).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Junli Hu
Xiangchao Cui
Junhua Wang
Xiangui Lin

키워드

요약

Arbuscular mycorrhizal (AM) fungi can ameliorate not only plant phosphorus (P) nutrition but also soil P mobilization, while P mobilization occurs secondarily and may in turn limit P acquisition at certain crop growth stages. It can be termed as the "mycorrhiza-inducible P limitation", which has so far largely escaped study. A pot experiment was conducted to test the dynamic P acquisition of maize (Zea mays L.) at the vegetative growth stage and P mobilization in the soil in response to AM fungal inoculation in an unsterilized arable alkaline soil. The experiment included two fertilization levels and two AM inoculation levels, i.e., nitrogen (N), P, and potassium (K) fertilization (NPK) and non-fertilization (control), as well as Funneliformis mosseae inoculation (+M) and non-inoculation (-M). Regardless of fertilization, +M increased mycorrhizal colonization and plant biomass at weeks 4 and 8 but increased tissue P concentration only at week 4 compared with those of -M. In addition, the plant P acquisition and shoot biomass in the control+M treatment at weeks 4 and 8 were close to and much lower than those of NPK-M, respectively. Furthermore, the increase in soil P mobilization potential, which was achieved by the accelerated soil alkaline phosphatase activity and the decreased soil pH, was lower than the increase in root P-acquiring efficiency, which was achieved by the enhanced mycorrhization and ZEAma;Pht1;6 (a mycorrhiza- inducible Pi transporter in maize root) expression. Regardless of fertilization, +M thus significantly decreased soil available P concentrations compared with those in the -M treatments. Therefore, there was a large, real gap between soil P mobilization and root P acquisition in response to enhanced root mycorrhizal colonization, substantially limiting plant P acquisition and growth.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge