Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2001-Aug

The binding of zinc and copper ions to nerve growth factor is differentially affected by pH: implications for cerebral acidosis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
G M Ross
I L Shamovsky
S B Woo
J I Post
P N Vrkljan
G Lawrance
M Solc
S M Dostaler
K E Neet
R J Riopelle

키워드

요약

It has recently been shown that transition metal cations Zn2+ and Cu2+ bind to histidine residues of nerve growth factor (NGF) and other neurotrophins (a family of proteins important for neuronal survival) leading to their inactivation. Experimental data and theoretical considerations indicate that transition metal cations may destabilize the ionic form of histidine residues within proteins, thereby decreasing their pK(a) values. Because the release of transition metal cations and acidification of the local environment represent important events associated with brain injury, the ability of Zn2+ and Cu2+ to bind to neurotrophins in acidic conditions may alter neuronal death following stroke or as a result of traumatic injury. To test the hypothesis that metal ion binding to neurotrophins is influenced by pH, the effects of Zn2+ and Cu2+ on NGF conformation, receptor binding and NGF tyrosine kinase (trkA) receptor signal transduction were examined under conditions mimicking cerebral acidosis (pH range 5.5-7.4). The inhibitory effect of Zn2+ on biological activities of NGF is lost under acidic conditions. Conversely, the binding of Cu2+ to NGF is relatively independent of pH changes within the studied range. These data demonstrate that Cu2+ has greater binding affinity to NGF than Zn2+ at reduced pH, consistent with the higher affinity of Cu2+ for histidine residues. These findings suggest that cerebral acidosis associated with stroke or traumatic brain injury could neutralize the Zn2+-mediated inactivation of NGF, whereas corresponding pH changes would have little or no influence on the inhibitory effects of Cu2+. The importance of His84 of NGF for transition metal cation binding is demonstrated, confirming the involvement of this residue in metal ion coordination.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge