Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 2010-May

The case of botulinum toxin in milk: experimental data.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Oliver G Weingart
Tanja Schreiber
Conny Mascher
Diana Pauly
Martin B Dorner
Thomas F H Berger
Charlotte Egger
Frank Gessler
Martin J Loessner
Marc-Andre Avondet

키워드

요약

Botulinum neurotoxin (BoNT) is the most toxic substance known to man and the causative agent of botulism. Due to its high toxicity and the availability of the producing organism Clostridium botulinum, BoNT is regarded as a potential biological warfare agent. Because of the mild pasteurization process, as well as rapid product distribution and consumption, the milk supply chain has long been considered a potential target of a bioterrorist attack. Since, to our knowledge, no empirical data on the inactivation of BoNT in milk during pasteurization are available at this time, we investigated the activities of BoNT type A (BoNT/A) and BoNT/B, as well as their respective complexes, during a laboratory-scale pasteurization process. When we monitored milk alkaline phosphatase activity, which is an industry-accepted parameter of successfully completed pasteurization, our method proved comparable to the industrial process. After heating raw milk spiked with a set amount of BoNT/A or BoNT/B or one of their respective complexes, the structural integrity of the toxin was determined by enzyme-linked immunosorbent assay (ELISA) and its functional activity by mouse bioassay. We demonstrated that standard pasteurization at 72 degrees C for 15 s inactivates at least 99.99% of BoNT/A and BoNT/B and at least 99.5% of their respective complexes. Our results suggest that if BoNTs or their complexes were deliberately released into the milk supply chain, standard pasteurization conditions would reduce their activity much more dramatically than originally anticipated and thus lower the threat level of the widely discussed "BoNT in milk" scenario.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge