Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2018-Apr

The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ewa M Kalemba
Ewelina Ratajczak

키워드

요약

Approximately 20% of plant species, including silver maple (Acer saccharinum L.), produce seeds that are sensitive to desiccation, which is reflected in their poor storage potential and viability. In the search for a compound that can improve seed recalcitrance, freshly harvested seeds were soaked in either 2.5 mM reduced glutathione (GSH) or water and desiccated to comparable water levels of 55-20%. We examined the impact of a doubled endogenous level of glutathione on the seed germination capacity, the activity of enzymes involved in glutathione metabolism, the cell membrane components and integrity, reactive oxygen species, and ascorbate levels. GSH treatment resulted in slower dehydration and a higher germination capacity. The increased glutathione was mainly consumed by glutathione S-transferase, leading to more efficient detoxification, and by dehydroascorbate reductase (DHAR), accelerating the ascorbate regeneration. As a result, the cellular environment became more reduced, and protection of the membrane structures was enhanced. The ameliorated membrane integrity was manifested via a lower electrolyte leakage and a lower lipid peroxide level despite the higher level of hydrogen peroxide (H2O2) detected in the GSH-treated seeds. The degradation of phospholipids (PLs) was less intense and related to the phosphatidylinositol (PI) level, which is the precursor of the phospholipase D cofactor, whereas in water-soaked seeds, PL degradation was promoted by H2O2. The germination capacity of the dehydrated seeds depended primarily on the level of H2O2, lipid hydroxyperoxides, electrolyte leakage, GSH, the half-cell reduction potential of glutathione, PI, and the activity of DHAR and γ-glutamylcysteine synthetase. Interestingly, H2O2 affected all of the parameters. The germination of GSH-boosted seeds was strongly impacted by the pool of ascorbate, the half-cell reduction potential of ascorbate, and the glutathione peroxidase activity. In general, germination was DHAR activity-dependent. A strong negative correlation was detected in the water-soaked seeds, whereas a strong positive correlation was detected in the GSH-treated seeds. The enhanced level of glutathione likely improved the efficiency of the ascorbate-glutathione cycle, confirming its effect on seed germinability after dehydration.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge