Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2001-Nov

The inhibition of ammonium uptake in excised birch (Betula pendula) roots by batatasin-III.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Anna Wallstedt
Marianne Sommarin
Marie-Charlotte Nilsson
Alison D. Munson
Hank A. Margolis

키워드

요약

In northern Sweden, plants growing in association with the clonal dwarf shrub Empetrum hermaphroditum usually exhibit limited growth and are N-depleted. Previous studies suggest that this negative effect by E. hermaphroditum may be explained, at least in part, by the release of phenolic compounds, particularly the dihydrostilbene, batatasin-III from foliage to soil. In the present work, we investigated whether batatasin-III has the potential to interfere with NH4+ uptake in birch (Betula pendula) roots. Excised birch roots were exposed to batatasin-III during brief periods in 15NH4+ solutions, and then analyzed for labeled N. Batatasin-III inhibited N-NH4+ uptake by 28, 89 and 95% compared with the control, when roots were treated with 0.1, 1.0 and 2.8 mM of batatasin-III, respectively. The effect of 1.0-mM batatasin-III was greater at pH 4.2 than at pH 6.8. In addition, the inhibition of N-NH4+ uptake by batatasin-III was not reversed after rinsing the roots in water and transferring them to a batatasin-III free solution. Furthermore, birch seedlings immersed in a 1.0-mM batatasin-III solution for 2 h, and then replanted in pots with soil, had decreased growth, such that 10 weeks after treatment, the dry mass of both shoots and roots was reduced by 74 and 73%, respectively, compared with control seedlings. This suggests that a brief exposure to batatasin-III may have a long-term inhibitory effect on whole plant growth. Using plasma membrane vesicles isolated from easily extractable spinach (Spinacia oleracea) leaves, it was found that batatasin-III strongly inhibited proton pumping in isolated plasma membrane vesicles, while it only slightly inhibited ATP hydrolytic activity. The uncoupling of proton pumping from ATP hydrolytic activity suggests that batatasin-III disturbs membrane integrity. This hypothesis was further supported by a greater efflux of ions from birch roots immersed in a batatasin-III solution than from roots in a control solution.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge