Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2013-Sep

The promoter of the carotenoid cleavage dioxygenase 4a-5 gene of Chrysanthemum morifolium (CmCCD4a-5) drives petal-specific transcription of a conjugated gene in the developing flower.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ayano Imai
Shigekazu Takahashi
Katsumi Nakayama
Hiroyuki Satoh

키워드

요약

Carotenoids comprise one of the major groups of pigments in flowers. Because carotenoids are physiologically indispensable pigments for all photosynthetic plants, their catabolism must be discretely regulated in photosynthetic organs and non-photosynthetic organs such as petals or fruits. In the chrysanthemum, carotenoid cleavage dioxygenase 4a (CmCCD4a), which is dominantly expressed in petals, cleaves carotenoid, leading to a white flower. CmCCD4a-5 was recently identified as a new member of the CmCCD4a family, but its detailed expression profile in plant tissues has not yet been established. In this study, we sequenced a 1094-bp region upstream of CmCCD4a-5 and assessed its petal-specific promoter activity. To evaluate the activity of this gene, we constructed two types of transgenic Arabidopsis thaliana that possessed, respectively, a fusion gene of a 1090-bp or 505-bp segment of the upstream region plus the β-d-glucuronidase (GUS) gene (1090bUR::GUS and 505bUR::GUS). GUS activity in the 505bUR::GUS strain was observed mainly in the anthers/pollen in flower buds, whereas GUS activity of the 1090bUR::GUS strain was observed in immature petals of the flower buds. Among the cis-acting elements located between positions -505 and -1090, no elements that have previously been reported to enhance the expression in petals or to suppress it in anthers/pollen were detected by PLACE analysis, indicating the existence of unknown cis-element(s). A semiquantitative reverse transcription-polymerase chain reaction analysis revealed that CmCCD4a-5 transcription was prominent in petals but was undetectable in roots, stems and leaves.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge