Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2019-May

The rice pds1 locus genetically interacts with partner to cause panicle exsertion defects and ectopic tillers in spikelets.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Qigui Jiang
Yindi Zeng
Baiyang Yu
Weijian Cen
Siyuan Lu
Peilong Jia
Xuan Wang
Baoxiang Qin
Zhongquan Cai
Jijing Luo

키워드

요약

Rice (Oryza sativa L.) is a staple food crop worldwide. Its yield and quality are affected by its tillering pattern and spikelet development. Although many genes involved in the vegetative and reproductive development of rice have been characterized in previous studies, the genetic mechanisms that control axillary tillering, spikelet development, and panicle exsertion remain incompletely understood.Here, we characterized a novel rice recombinant inbred line (RIL), panicle exsertion defect and aberrant spikelet (pds). It was derived from a cross between two indica varieties, S142 and 430. Intriguingly, no abnormal phenotypes were observed in the parents of pds. This RIL exhibited sheathed panicles at heading stage. Still, a small number of tillers in pds plants were fully exserted from the flag leaves. Elongated sterile lemmas and rudimentary glumes (occurred occasionally) were observed in the spikelets of the exserted panicles and were transformed into palea/lemma-like structures. Furthermore, more interestingly, tillers occasionally grew from the axils of the elongated rudimentary glumes. Via genetic linkage analysis, we found that the abnormal phenotype of pds manifesting as genetic incompatibility or hybrid weakness was caused by genetic interaction between a recessive locus, pds1, which was derived from S142 and mapped to chromosome 8, and a locus pds2, which not yet mapped from 430. We fine-mapped pds1 to an approximately 55-kb interval delimited by the markers pds-4 and 8 M3.51. Six RGAP-annotated ORFs were included in this genomic region. qPCR analysis revealed that Loc_Os080595 might be the target of pds1 locus, and G1 gene might be involved in the genetic mechanism underlying the pds phenotype.In this study, histological and genetic analyses revealed that the pyramided pds loci resulted in genetic incompatibility or hybrid weakness in rice might be caused by a genetic interaction between pds loci derived from different rice varieties. Further isolation of pds1 and its interactor pds2, would provide new insight into the molecular regulation of grass inflorescence development and exsertion, and the evolution history of the extant rice.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge