Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrinology 1988-Sep

Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
M Centrella
T L McCarthy
E Canalis

키워드

요약

Tumor necrosis factor-alpha (TNF alpha), a product of activated monocytes, induces tissue wasting in certain solid tumors in vivo and in in vitro model systems. Recent studies indicate that TNF alpha also regulates cell replication and expression of differentiated function in a variety of nonneoplastic cell systems. Since monocyte products could accumulate in bone with trauma, inflammation, or other disease states, bone cell activity might be altered by the presence of these pathophysiological molecules. Using cells obtained by sequential enzyme release from fetal rat parietal bone, we find that TNF alpha has acute stimulatory and inhibitory effects on bone cell macromolecular synthesis. Within 24 h of exposure, recombinant human TNF alpha at 0.3-100 nM progressively increases the rate of DNA synthesis in osteoblast-enriched cell cultures up to 3- to 4-fold, and 3-100 nM TNF alpha reduces collagen production and alkaline phosphatase activity by 20-30%. These decreases are not altered by 1 mM hydroxyurea, which blocks the mitogenic effect of TNF alpha by 85-90%. In addition, hydroxyproline levels in the culture medium do not increase relative to the control value after TNF alpha treatment, suggesting that decreased collagen production results from less synthesis rather than increased collagen degradation. Hybridization studies with cDNA encoding the alpha 1-chain of rat type I collagen show that TNF alpha increases type I collagen mRNA to an extent similar to its effect on cell replication. Therefore, TNF alpha appears to inhibit collagen synthesis and alkaline phosphatase activity in osteoblast-enriched cell cultures by mechanisms that are not related to its effects on cell replication.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge