Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biometeorology 2003-Dec

Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Mohamed Laaidi
Michel Thibaudon
Jean-Pierre Besancenot

키워드

요약

The aim of the present study was to forecast the start and duration of the pollen season of Ambrosia from meteorological data, in order to provide early information to allergists and allergic people. We used the airborne pollen data from Lyon (France), sampled using a Hirst trap from 1987 to 1999, and the meteorological data for the same period: air temperature (minimal, maximal, and average), rainfall, relative humidity, sunshine duration and soil temperature. Two forecasting models were used, one summing the temperatures and the other making use of a multiple regression on 10-day or monthly meteorological parameters. The start of the pollen season was predicted with both methods, results being more accurate with the regression (the errors between the predicted and the observed SDP ranging from 0 to 3 days). The duration of the pollen season was predicted by a regression model, errors ranging from 0 to 7 days. The models were later tested with satisfactory results from 2 additional years (2000 and 2001). Such forecasting models are helpful for allergic people, who have to begin their anti-allergic treatment before the start of the pollen season and not when the symptoms have appeared, since a preventive treatment is more efficient than a curative one. The regression allows predictions to be made 3-5 weeks in advance and so it is of particular interest. The forecasts will be broadcast on the Internet.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge