Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Heart and Circulatory Physiology 2009-Dec

Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ratnadeep Basu
Gavin Y Oudit
Xiuhua Wang
Liyan Zhang
John R Ussher
Gary D Lopaschuk
Zamaneh Kassiri

키워드

요약

Diabetic cardiomyopathy is an important contributor to diastolic and systolic heart failure. We examined the nature and mechanism of the cardiomyopathy in Akita (Ins2(WT/C96Y)) mice, a model of genetic nonobese type 1 diabetes that recapitulates human type 1 diabetes. Cardiac function was evaluated in male Ins2WT/C96Y and their littermate control (Ins2WT/WT) mice using echocardiography and tissue Doppler imaging, in vivo hemodynamic measurements, as well as ex vivo working heart preparation. At 3 and 6 mo of age, Ins2WT/C96Y mice exhibited preserved cardiac systolic function compared with Ins2WT/WT mice, as evaluated by ejection fraction, fractional shortening, left ventricular (LV) end-systolic pressure and maximum rate of increase in LV pressure in vivo, cardiac work, cardiac power, and rate-pressure product ex vivo. Despite the unaltered systolic function, Ins2WT/C96Y mice exhibited significant and progressive diastolic dysfunction at 3 and 6 mo of age compared with Ins2WT/WT mice as assessed by tissue and pulse Doppler imaging (E-wave velocity, isovolumetric relaxation time) and by in vivo hemodynamic measurements (LV end-diastolic pressure, time constant of LV relaxation, and maximum rate of decrease in LV pressure). We found no evidence of myocardial hypertrophy or fibrosis in the Ins2WT/C96Y myocardium. Consistent with the lack of fibrosis, expression of procollagen-alpha type I, procollagen-alpha type III, and fibronectin were not increased in these hearts. Ins2WT/C96Y hearts showed significantly reduced sarcoplasmic reticulum Ca2+-ATPase 2a (cardiac sarcoplasmic reticulum Ca2+ pump) levels, elevated beta-myosin heavy chain isoform, increased long-chain fatty acids, and triacylglycerol with evidence of lipotoxicity, as indicated by a significant rise in ceramide, diacylglycerol, and lipid deposits in the myocardium. Consistent with metabolic perturbation, and a switch to fatty acid oxidation from glucose oxidation in Ins2WT/C96Y hearts, expression of mitochondrial long-chain acyl-CoA dehydrogenase and pyruvate dehydrogenase kinase isoform 4 were increased. Insulin treatment reversed the diastolic dysfunction, the elevated B-type natriuretic peptide and beta-myosin heavy chain, and the reduced sarcoplasmic reticulum Ca2+-ATPase 2a levels with abolition of cardiac lipotoxicity. We conclude that early type 1 diabetic cardiomyopathy is characterized by diastolic dysfunction associated with lipotoxic cardiomyopathy with preserved systolic function in the absence of interstitial fibrosis and hypertrophy.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge