Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rapid Communications in Mass Spectrometry 2018-Aug

Ultrahigh-performance liquid chromatography coupled with triple quadrupole and time-of-flight mass spectrometry for the screening and identification of the main flavonoids and their metabolites in rats after oral administration of Cirsium japonicum DC. extract.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Xia Zhang
Man Liao
Xiaoye Cheng
Caijuan Liang
Xinpeng Diao
Lantong Zhang

키워드

요약

BACKGROUND

Cirsium japonicum DC., a traditional Chinese medicine, has been shown to have anti-haemorrhagic and anti-tumour effects. Pharmacological studies have demonstrated that this curative effect may be related to flavonoids. The present work aimed to screen and identify the main flavonoids and their corresponding metabolites in rats after oral administration of Cirsium japonicum DC. extract.

METHODS

A rapid and simple method based on ultrahigh-performance liquid chromatography coupled with triple quadrupole and time-of-flight mass spectrometry (UHPLC/QTOF-MS) was developed for the identification of the primary absorbing components and metabolites of the principal flavonoids. The absorbing components were first characterized, followed by the selection of representative constituents. In this study, the main flavonoids, pectolinarin, linarin and pectolinarigenin, were selected as templates to identify possible metabolites.

RESULTS

A total of 27 metabolites were detected in rat blood, urine and bile samples. A hydrolysis reaction was the first step for pectolinarin and linarin, followed by oxidation and reduction reactions. However, phase II metabolites for pectolinarin and linarin were not detected. The primary biotransformation routes of pectolinarigenin were identified as oxidation, reduction, hydrolysis, and glucuronide and glucose conjugation.

CONCLUSIONS

The metabolic pathways of pectolinarin, linarin and pectolinarigenin were summarized. This study not only proposed a practical strategy for rapidly screening and identifying metabolites but also provided useful information for further pharmacological studies and the design of new drugs based on Cirsium japonicum DC.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge