Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2004-Apr

Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
John V. Dean
Jennifer D. Mills

키워드

요약

In soybean (Glycine max L.), salicylic acid (SA) is converted primarily to SA 2-O-beta-d-glucose (SAG) in the cytoplasm and then accumulates exclusively in the vacuole. However, the mechanism involved in the vacuolar transport of SAG has not been investigated. The vacuolar transport of SAG was characterized by measuring the uptake of [(14)C]SAG into tonoplast vesicles isolated from etiolated soybean hypocotyls. The uptake of SAG was stimulated about six-fold when MgATP was included in the assay media. In contrast, the uptake of SA was only stimulated 1.25-fold by the addition of MgATP and was 2.2-fold less than the uptake of SAG providing an indication that the vacuolar uptake of SA is promoted by glucosylation. The ATP-dependent uptake of SAG was inhibited by increasing concentrations of vanadate (64% inhibition in the presence of 500 microM) but was not very sensitive to inhibition by bafilomycin A(1) (a specific inhibitor of vacuolar H(+)-ATPase; EC 3.6.1.3), and dissipation of the transtonoplast H(+)-electrochemical gradient. The SAG uptake exhibited Michaelis-Menten-type saturation kinetics with a K(m) value of 90 microM for SAG. SAG uptake was inhibited 60% by beta-estradiol 17-(beta-d-glucuronide), but glutathione conjugates and uncharged glucose conjugates were only slightly inhibitory. Based on the characteristics of SAG uptake into soybean tonoplast vesicles it is likely that this uptake occurs through an ATP-binding cassette transporter-type mechanism. However, this vacuolar uptake mechanism is not universal since the uptake of SAG by red beet (Beta vulgaris L) tonoplast vesicles appears to involve an H(+)-antiport mechanism.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge