Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2020-Feb

Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Scott Cosseboom
Guido Schnabel
Mengjun Hu

키워드

요약

Botrytis cinerea isolates with multi-fungicide resistance have frequently been isolated from small fruit fields such as strawberries and blackberries. Individual B. cinerea isolates have been found resistant to up to seven chemical classes of fungicides. Fitness costs and less competitiveness have been observed in multi-fungicide resistant isolates, but this has not been examined under field conditions. In the spring of 2016, flowers of field-grown blackberries were either not inoculated or inoculated with B. cinerea isolates sensitive (0CCR), resistant to five or six chemical classes excluding phenylpyrroles (5CCR), or resistant to six or seven chemical classes including phenylpyrroles (6CCR/MDR1h). The experimental field was left unsprayed for the duration of this study and isolates of B. cinerea were collected from flowers and/or fruit in each of the three experimental years. Isolates collected in summer of 2016 revealed resistance phenotypes in each plot closely matching those of the respective inoculum, with 95% 0CCR, 55% 5CCR, and 91% 6CCR/MDR1h isolates recovered from 0CCR, 5CCR, and 6CCR/MDR1h inoculation plots, respectively. In the 2017 and 2018 isolate collections, 6CCR/MDR1h resistance phenotypes were found in plots inoculated and non-inoculated with this phenotype, indicating their persistence and movement between plots. Resistance phenotypes different from the inoculum were also recovered each year, indicating that the inoculum was successfully competing with a native Botrytis population. Despite the competition, 6CCR/MDR1h isolates were recovered in high frequency from all inoculated plots in 2018. G3pdh and mrr1 sequences of 6CCR/MDR1h isolates collected in 2018 were identical to the sequences of the inoculum, indicating that these isolates likely descended from the inoculum. This study demonstrates that isolates carrying multi-fungicide resistant phenotypes, specifically 6CCR/MDR1h, are competitive in the absence of fungicide selection pressure.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge