Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
StatPearls Publishing 2019-01

Dipyridamole Nuclear Stress Test

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Amol Gupta
Samir Samarany

키워드

요약

A nuclear stress test is a relatively non-invasive diagnostic procedure that involves the injection of a small quantity of radioactive tracer into the bloodstream, administered in conjunction with myocardial perfusion imaging and a stress test, which challenges the functional capacity of the heart.[1] As blood containing the radioactive tracer flows through the heart, its energy is detected by a gamma camera or scanner that produces images of the heart’s vascular network after a stress test and/or at rest.[1][2] The stress test increases myocardial blood perfusion and creates a disparity in blood flow between normal and stenosed arteries,[3] allowing clinicians to see more clearly than if the patient were at rest if there are regions of the heart muscle that are ischemic. Indeed, this allows the clinician to determine the presence and progression of any suspected or known coronary heart disease, or if there is a history of myocardial infarction.[4] Additionally, a nuclear stress test can determine the potential or realized effectiveness of interventions or procedures (e.g., by-pass surgery or the installation of a coronary stent) that can be implemented to improve myocardial blood perfusion in the treatment of such cardiac complications.[2] One of the most commonly performed stress tests, which accompanies nuclear-based perfusion imaging, is exercise-based.[5] However, in certain circumstances, there may be contraindications for performing an exercise, and it is, subsequently, more appropriate to use a pharmacologically-based stress test involving the administration dipyridamole, adenosine, or regadenoson.[2][5][6] Indeed, these vasodilators can emulate the cardiac response to exercise,[7] increasing myocardial perfusion to reveal ischemic regions, while the patient remains physically passive throughout the test. Dipyridamole may not be the most potent vasodilator,[8] but it is associated with a lower frequency of side effects (although longer lasting) than adenosine, and it is far more cost-effective than regadenoson.[2][9][10] Mechanism of Action Dipyridamole is a phosphodiesterase enzyme inhibitor. It indirectly increases myocardial perfusion by inhibiting the degradation of cyclic adenosine monophosphate and by blocking the cellular reuptake of endogenous adenosine. Subsequently, the concentration of circulating adenosine increases by 3- to 4-fold.[2][3] Adenosine then acts on the A receptor, which upregulates the production of cyclic adenosine monophosphate.[2] Cyclic adenosine monophosphate then relaxes the vascular smooth muscle,[11] inducing vasodilation and increasing myocardial perfusion by 3.8- to 7-fold. Peak vasodilation after dipyridamole administration occurs on average 6.5 minutes after the start of the infusion.[2] The hyperemic effect of dipyridamole can last for more than 50 minutes, with the half-life of dipyridamole being 30 to 45 minutes.[2] The circulating adenosine may also act on the A, A and A receptors, which has the potential to induce several complications described further below.[2] It is metabolized in the liver to the glucuronic acid conjugate and excreted in the bile.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge