Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2019-Nov

iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Zhou Li
Ting Huang
Mingyan Tang
Binzhen Cheng
Yan Peng
Xinquan Zhang

키워드

요약

γ-Aminobutyric acid (GABA), a non-proteinaceous amino acid, modulates plant growth and stress tolerance. However, the potential role of GABA in regulating key metabolic pathways and stress-defensive proteins against drought in plants has never been explored. Creeping bentgrass (Agrostis stolonifera) plants were pretreated with or without GABA and then subjected to water stress for 8 days in controlled growth chambers (23/19 °C, day/night). Physiological analysis showed that elevated endogenous GABA level via exogenous GABA application significantly mitigated water stress damage to creeping bentgrass, as manifested by increased leaf relative water content, water use efficiency, osmotic adjustment (OA), photochemical efficiency (Fv/Fm), net photosynthetic rate, and reduced oxidative damage. iTRAQ-based proteomics found that enhanced chaperones accumulation, carbohydrates, amino acids, and energy metabolism played important roles in protein protection, OA, energy maintenance, and metabolic balance, which is important adaptive response to drought stress in creeping bentgrass. The GABA further promoted energy production and conversion, antioxidant defense, and DHN3 accumulation that were essential for energy requirement, ROS-scavenging, and the prevention of cell dehydration in leaf during drought stress. In addition, GABA-treated plants maintained significantly higher abundance of dicarboxylate transporter 2.1, ATP-dependent zinc metalloprotease, receptor-like protein kinase HERK1, o-acyltransferase WSD1, omega-6 fatty acid desaturase, and two-component response regulator ORR21 than untreated plants under drought stress. The result provides new evidences that GABA-induced drought tolerance is possibly involved in the improvement of nitrogen recycling, protection of photosystem II, mitigation of drought-depressed cell elongation, wax biosynthesis, fatty acid desaturase, and delaying leaf senescence in creeping bentgrass.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge