Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

carboxylase/옥수수

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
페이지 1 ...에서 242 결과

Ribulose-1,5-bisphosphate carboxylase/oxygenase from Zea mays: amino-acid sequence of the small subunit.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The amino-acid sequence of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Zea mays has been determined by alignment of peptides generated by digestion with trypsin, chymotrypsin, staphylococcal protease and thermolysin. The protein-chemically determined structure is in

Hydrolysis of phosphoenolpyruvate catalyzed by phosphoenolpyruvate carboxylase from Zea mays.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate
The impact of ozone on crops was more studied in C (3) than in C (4) species. In C (3) plants, ozone is known to induce a photosynthesis impairment that can result in significant depressions in biomass and crop yields. To investigate the impact of O (3) on C (4) plant species, maize seedlings ( ZEA

Changes in PEP carboxylase, rubisco and rubisco activase mRNA levels from maize (Zea mays) exposed to a chronic ozone stress.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR.
Herbicidal activity of aryloxyphenoxypropionate and cyclohexanedione herbicides (graminicides) has been proposed to involve two mechanisms: inhibition of acetyl-coenzyme A carboxylase (ACCase) and depolarization of cell membrane potential. We examined the effect of aryloxyphenoxypropionates
The susceptibilities of maize (Zea mays cv. Champ) and two graminicide-resistant grass species, Poa annua (annual meadow grass) and Festuca rubra (red fescue), to two aryloxyphenoxypropionates (quizalofop and fluazifop) and a cyclohexanedione (sethoxydim) graminicide were evaluated in leaf blades
The activity and allosteric properties of plant phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) are controlled posttranslationally by specific reversible phosphorylation of a strictly conserved serine residue near the N-terminus. This up/down-regulation of PEPC is catalyzed by a dedicated and
To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea mays leaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a

Expression of the Acc1 Gene-Encoded Acetyl-Coenzyme A Carboxylase in Developing Maize (Zea mays L.) Kernels.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing

Metal Ion Interactions with Phosphoenolpyruvate Carboxylase from Crassula argentea and Zea mays.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Metal ion interactions with phosphoenolpyruvate carboxylase from the CAM plant Crassula argentea and the C(4) plant Zea mays were kinetically analyzed. Fe(2+) and Cd(2+) were found to be active metal cofactors along with the previously known active metals Mg(2+), Mn(2+), and Co(2+). In studies with

Kinetics of phosphoenolpyruvate carboxylase from Zea mays leaves at high concentration of substrates.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
At low concentrations of phosphoenolpyruvate and magnesium, the substrate of phosphoenolpyruvate carboxylase (PEPC) from Zea mays leaves is the MgPEP complex and free phosphoenolpyruvate (fPEP) is an allosteric activator [A. Tovar-Méndez, R. Rodríguez-Sotres, D.M. López-Valentín, R.A. Muñoz-Clares,

Mechanistic studies of phosphoenolpyruvate carboxylase from Zea mays with (Z)- and (E)-3-fluorophosphoenolpyruvate as substrates.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate.
Phosphoenolpyruvate carboxylase (PEPC) the carbon dioxide processing enzyme of C(4) plants, shows the features of an allosteric enzyme. Allosteric activators such as D-glucose-6-phosphate and glycine increase the affinity of PEPC for its substrate PEP at pH 8.0 and pH 7.0. Allosteric inhibitors like

A kinetic investigation of phosphoenolpyruvate carboxylase from Zea mays.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The reaction catalyzed by phosphoenolpyruvate carboxylase from Zea mays has been studied kinetically. Results of initial velocity patterns and inhibition studies indicate that phosphoenolpyruvate carboxylase has a random sequential mechanism in which there is a high level of synergism in the binding
This study was conducted to assess the effects of dietary corn oil and vitamin E supplementation on fatty acid (FA) profiles and abundances of acetyl-CoA carboxylase (ACC) and Delta(9) stearoyl-CoA desaturase (SCD) mRNA of Hu sheep. Animals were allocated to three dietary treatments: basal and
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge