Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glucuronic acid/arabidopsis

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
페이지 1 ...에서 70 결과
D-glucuronic acid (GlcUA) is an important intermediate with numerous applications in the food, cosmetics, and pharmaceutical industries. Its biological production routes which employ myo-inositol oxygenase (MIOX) as the key enzyme are attractive. In this study, five diverse MIOX-encoding genes, from

Glucuronic acid in Arabidopsis thaliana xylans carries a novel pentose substituent.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Glucuronic acids in Arabidopsis thaliana xylans exist in 4-O-methylated (MeGlcA) and non-methylated (GlcA) forms at a ratio of about 3:2. The matrix-assisted laser desorption/ionization mass spectrometry analysis of the endoxylanase liberated acidic oligosaccharides from the Arabidopsis
UDP-GlcA 4-epimerase (UGlcAE) catalyzes the epimerization of UDP-alpha-D-glucuronic acid (UDP-GlcA) to UDP-alpha-D-galacturonic acid (UDP-GalA). UDP-GalA is a precursor for the synthesis of numerous cell-surface polysaccharides in bacteria and plants. Using a biochemical screen, a gene encoding
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a
UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double

Identification of a disaccharide side chain 2-O-α-D-galactopyranosyl-α-D-glucuronic acid in Arabidopsis xylan.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Arabidopsis xylan consists of a linear chain of β-1,4-linked D-xylosyl residues, about 10% of which are substituted with single residues of α-D-glucuronic acid (GlcA) or 4-O-methyl-α-D-glucuronic acid (MeGlcA) at O-2. In addition, about 60% of xylosyl residues are acetylated at O-2 and/or O-3.

Role of UDP-Glucuronic Acid Decarboxylase in Xylan Biosynthesis in Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) is irreversibly catalyzed by

Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-o-methylation of glucuronic acid on xylan.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Xylan is made of a linear chain of β-1,4-linked xylosyl residues, some of which are substituted with side chains, such as glucuronic acid (GlcA), methylglucuronic acid (MeGlcA) and arabinose, depending on the source of xylan. Although past studies have revealed a number of genes involved in the

4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of

Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that mutations of two
UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and

Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
UDP-xylose (UDP-Xyl) is a sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in plants, vertebrates, and fungi. In plants, the biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) appears to be catalyzed by numerous UDP-glucuronic acid
Here we present a highly sensitive and simple high-performance liquid chromatography (HPLC) method that enables specific quantification of glucuronokinase activity in partially purified extracts from pollen of Lilium longiflorum without radioactive labeled substrates. This assay uses a recombinant

Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously

Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge