Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glutamate decarboxylase/arabidopsis

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
페이지 1 ...에서 17 결과

Cloning and characterization of a rice cDNA encoding glutamate decarboxylase.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected

Cloning and nucleotide sequence of the glutamate decarboxylase-encoding gene gadA from Aspergillus oryzae.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
We cloned a genomic DNA encoding the glutamate decarboxylase (GAD) from Aspergillus oryzae using a 200-bp DNA fragment as the probe. This DNA fragment was amplified by the reverse transcription polymerase chain reaction with mRNA of A. oryzae as the template and degenerate primers designed from the

A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Glutamate decarboxylase (Gad) catalyzes glutamate to gamma-aminobutyrate conversion. Plant Gad is a approximately 340 kDa hexamer, involved in development and stress response, and regulated by pH and binding of Ca(2+)/calmodulin (CaM) to the C-terminal domain. We determined the crystal structure of

Functional roles of the hexamer organization of plant glutamate decarboxylase.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Glutamate decarboxylase (GAD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the α-decarboxylation of glutamate to γ-aminobutyrate. A unique feature of plant GAD is the presence of a calmodulin (CaM)-binding domain at its C-terminus. In plants, transient elevation of cytosolic
γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content

Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Two distinct cDNA clones encoding for the glutamate decarboxylase (GAD) isoenzymes GAD1 and GAD2 from Arabidopsis (L.) Heynh. were characterized. The open reading frames for GAD1 and GAD2 were expressed in Escherichia coli and the recombinant proteins were purified by affinity chromatography.

Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a

The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
To provide 4-hydroxybutyryl-CoA for poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from glutamate in Escherichia coli, an acetyl-CoA:4-hydroxybutyrate CoA transferase from Clostridium kluyveri, a 4-hydroxybutyrate dehydrogenase from Ralstonia eutropha, a gamma-aminobutyrate:2-ketoglutarate

The involvement of gamma-aminobutyric acid shunt in the endoplasmic reticulum stress response of Arabidopsis thaliana

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The endoplasmic reticulum (ER) is the main site of secretory protein production and folding and its homeostasis under environmental stress is vital for the maintenance of the protein secretory pathway. The loss of homeostasis and accumulation of unfolded proteins in the ER is referred to as ER

Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to

Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the

WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or
In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis

Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
When subjected to low oxygen stress, plants accumulate alanine and gamma-aminobutyric acid (GABA). To investigate the function of GABA metabolism under hypoxia and its contribution to alanine accumulation, we studied the genes that encode the two key enzymes of the GABA shunt, glutamate
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge