Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glycan/애기장대

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
페이지 1 ...에서 157 결과

Introduction of tri-antennary N-glycans in Arabidopsis thaliana plants.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Because the pathway for protein synthesis is largely conserved between plants and animals, plants provide an attractive platform for the cost effective and flexible production of biopharmaceuticals. However, there are some differences in glycosylation between plants and humans that need to be
N-Acetylglucosaminyltransferase I (EC 2.4.1.101) initiates the conversion of high-mannose asparagine-linked glycans to complex asparagine-linked glycans in plant as well as in animal cells. This Golgi enzyme is missing in the cgl mutant of Arabidopsis thaliana, and the mutant cells are unable to

Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
In eukaryotes, class I alpha-mannosidases are involved in early N-glycan processing reactions and in N-glycan-dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type alpha-mannosidase I (MNS3) and the two

A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded

Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been

Metabolic Labeling and Imaging of N-Linked Glycans in Arabidopsis Thaliana.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Molecular imaging of glycans has been actively pursued in animal systems for the past decades. However, visualization of plant glycans remains underdeveloped, despite that glycosylation is essential for the life cycle of plants. Metabolic glycan labeling in Arabidopsis thaliana by using

Arabidopsis thaliana ALG3 mutant synthesizes immature oligosaccharides in the ER and accumulates unique N-glycans.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The core oligosaccharide Glc(3)Man(9)GlcNAc(2) is assembled by a series of membrane-bound glycosyltransferases as the lipid carrier dolichylpyrophosphate-linked glycan in the endoplasmic reticulum (ER). The first step of this assembly pathway on the ER luminal side is mediated by ALG3

Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible for plant N-glycan maturation.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
N-Glycosylation is an important post-translational modification that occurs in many secreted and membrane proteins in eukaryotic cells. Golgi alpha-mannosidase I hydrolases (MANI) are key enzymes that play a role in the early N-glycan modification pathway in the Golgi apparatus. In Arabidopsis

Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis
N-glycosylation is one of the major post-translational modifications of proteins in eukaryotes; however, the processing reactions of oligomannosidic N-glycan precursors leading to hybrid-type and finally complex-type N-glycans are not fully understood in plants. To investigate the role of Golgi
Endo-β-N-acetylglucosaminidase (ENGase) is involved in the production of high-mannose type free N-glycans during plant development and fruit maturation. In a previous study (K. Nakamura et al. Biosci. Biotechnol. Biochem., 73, 461-464 (2009)), we identified the tomato ENGase gene and found that gene

The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Endo-β-N-acetylglucosaminidases (ENGases) cleave N-glycans from proteins and/or peptides by hydrolyzing the O-glycosidic linkage between the two core-N-acetylglucosamine (GlcNAc) residues. Although, two homologous genes potentially encoding ENGases have been identified in Arabidopsis thaliana, their

Expanding the Scope of Metabolic Glycan Labeling in Arabidopsis thaliana.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Metabolic glycan labeling (MGL) has gained wide utility and has become a useful tool for probing glycosylation in living systems. For the past three decades, the development and application of MGL have mostly focused on animal glycosylation. Recently, exploiting MGL for studying plant glycosylation

Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this

Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
A small group of F-box proteins consisting of a conserved F-box domain linked to a domain homologous to the glycan-binding protein has been identified within the genome of Arabidopsis thaliana. Previously, the so-called F-box-Nictaba protein, encoded by the gene At2g02360, was shown to be a
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge