8 결과
Kelthane [4,4'-dichloro-alpha-(trichloromethyl)benzhydrol] was previously shown to decrease the limited tolerance of susceptible varieties of cotton (Gossypium) to Verticillium wilt. Kelthane was shown in the present study to inhibit the cell-wall p-nitrophenyl phosphatase of cotton. In view of
Low dosages of chloramphenicol (25-50 micrograms/ml) brought about a 2-4-fold stimulation of acid phosphatase activity in 48 h-germinated cotton (Gossypium hirsutum) embryos. However, at high concentrations of chloramphenicol (100-1000 micrograms/ml), there was a progressive decline in enzyme
Salinity is among the major factors limiting crop production worldwide. Despite having moderate salt-tolerance, cotton (Gossypium spp.) suffers severe yield losses to salinity stresses, largely due to being grown on saline-alkali and dry lands. To identify genetic determinants conferring salinity
Clade A type 2C protein phosphatases (PP2CAs), as central regulators of abscisic acid (ABA) signaling, negative control growth, development and responses to multiple stresses in plants. PP2CA gene families have been characterized at genome-wide levels in several diploid plants like
CONCLUSIONS
Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly
Cotton is an important industrial crop worldwide and upland cotton (Gossypium hirsutum L.) is most widely cultivated in the world. Due to ever-increasing water deficit, drought stress brings a major threat to cotton production. Thus, it is important to reveal the genetic basis under drought stress
Water stress induced by floating discs cut from cotton leaves (Gossypium hirsutum L. cultivar Stoneville) on a polyethylene glycol solution (water potential, -10 bars) was associated with marked alteration of ultrastructural organization of both chloroplasts and mitochondria. Ultrastructural