Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

jasmonic acid/oryza sativa

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
페이지 1 ...에서 151 결과
We have used three kinds of stresses, including the signaling compound jasmonic acid, an environmental stressor, UV irradiation, and a heavy metal salt copper chloride, to study changes in the protein patterns in rice (Oryza sativa L.) leaf tissues using two-dimensional polyacrylamide gel
The Bowman-Birk (BB) family of proteinase inhibitors (PI), initially reported from legume seeds, and thereafter also from wounded alfalfa and maize leaves appear to be regulated in similar ways as the extensively characterized PI I and PI II family from dicots. Here, we report a first
Jasmonic acid (JA) is a well-known defence hormone, but its biological function and mechanism in rice root development are less understood. Here, we describe a JA-induced putative receptor-like protein (OsRLK, AAL87185) functioning in root development in rice. RNA in situ hybridization revealed that
It is evident that the plasma membrane NADPH oxidases (NOXs) play an important role in the generation of superoxide radicals (O2-•) in plants during defense responses. This study was to clarify activation of NOXs in oxidative damage in Oryza sativa during SCN-

Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
We investigated the effects of silicon (Si) application on rice plants (Oryza sativa L.) and its responses in the regulation of jasmonic acid (JA) during wounding stress. Endogenous JA was significantly higher in wounded rice plants than in non-wounded. In contrast, Si treatment significantly
Amino acid conjugates of jasmonic acid are found to elicit production of the flavonoid phytoalexin, sakuranetin in rice leaves. The elicitation is shown to arise from induction of naringenin 7-O-methyltransferase, a key enzyme of sakuranetin biosynthesis. The (-)-phenylalanine conjugate, one of the
Jasmonic acid (JA) has been shown to be a signaling compound which elicits the production of secondary metabolites including phytoalexins in plants. It has been shown that the phytoalexin production is elicited by exogenously applied JA in rice leaves. We now show that this phytoalexin production by

Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The phytotoxin coronatine induced the accumulation of the flavonoid phytoalexins sakuranetin and momilactone A in rice leaves. Coronatine-inducible sakuranetin production was under the control of kinetin and ascorbic acid (AsA), as observed with jasmonic acid (JA). The effects of kinetin and AsA on
Abscisic acid (ABA) and Jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a "SAPK10-bZIP72-AOC" pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using
A novel rice (Oryza sativa L.) gene, homologous to a sorghum pathogenesis-related class 10 protein gene, was cloned from a cDNA library prepared from 2-week-old jasmonic acid-treated rice seedling leaves, and named as JIOsPR10 (jasmonate inducible). JIOsPR10 encoded a 160-amino-acid polypeptide with
gamma-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea.

Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The current study was conducted in order to investigate the short-term effects (6, 12, and 24 h) of silicon (Si) on the endogenous hormonal composition of rice (Oryza sativa L. cv. Dongjin-beyo), with and without wounding stress. Si applied in different concentrations (0.5, 1.0, and 2.0 mM)

Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
The possible role of the octadecanoid signaling pathway with jasmonic acid (JA) as the central component in defense-gene regulation of pathogen-attacked rice was studied. Rice (Oryza sativa L.) seedlings were treated with JA or inoculated with the rice blast fungus Magnaporthe grisea (Hebert) Barr.,

Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Potential adverse effects of nanoplastics (NPs) on marine organisms have received increased attention in recent years. In contrast, few data are available on terrestrial plants, especially on the mechanisms for transport of NPs in plants and phytotoxicity (at both phenotypic and molecular levels) of

Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
We previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge