Lithuanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2014-Aug

First Report of Cercospora apii, Causal Agent of Cercospora Early Blight of Celery, in Serbia.

Straipsnius versti gali tik registruoti vartotojai
Prisijungti Registracija
Nuoroda įrašoma į mainų sritį
A Milosavljević
E Pfaf-Dolovac
M Mitrović
J Jović
I Toševski
N Duduk
N Trkulja

Raktažodžiai

Santrauka

Celery (Apium graveolens var. dulce) is a very important vegetable crop intensively cultivated in eastern and southern Serbia. During a field survey in August and September 2012, we observed symptoms similar to those of Cercospora early blight in eastern Serbia, with some of the affected fields showing up to 80% disease severity. The lesions on leaves were amphigenous, subcircular to angular and more or less confluent. Lesions enlarged and merged with age, followed by the development of necrotic area causing a continuous deterioration of the plant. Conidiophores arising from the stromata formed dense fascicles, sometimes appearing solitary, brown at the base, paler toward the apex, simple, straight to slightly curved, and rarely geniculate (dimensions 40 to 90 × 5 to 8 μm). Conidia were solitary, hyaline, at first cylindro-obclavate then acicular to acicular-obclavate, straight to slightly curved, subacute to obtuse at the apex, while truncated and thickened at the base (dimensions 45 to 160 × 4 to 5 μm), 5 to 13 septate. Based on the morphological features, we identified the pathogen as Cercospora apii Fresen. (2). In order to obtain monosporic isolates of the fungus, single conidia were cultivated on potato dextrose agar (PDA). To confirm the pathogenicity of the isolates, 5 mm-diameter mycelial plugs from the PDA plates were placed upside down on the adaxial leaf surface of 2-week-old celery seedlings of cv. Yuta. Control plants were inoculated with a sterile PDA plug. Three leaves per plant were disinfected with 70% ethanol, epidermis was scratched with a sterile needle to promote the infection, and inoculated. A total of 12 plants were inoculated with the mycelial plugs and 12 were used as control plants. Inoculated and control plants were kept in a moist chamber for 48 h and then transferred to a greenhouse at 25 ± 2°C. After 2 weeks, the first necrotic spots appeared on inoculated leaves, similar to the symptoms manifested in the field, while control plants remained symptomless. The pathogen was re-isolated and its identity was verified based on morphological and molecular features. To confirm the pathogen's identity, three isolates (CAC4-1, CAC24, and CAC30) were subjected to molecular identification based on the internal transcribed spacer region (ITS) using the ITS1/ITS4 universal primers (5), a partial calmodulin gene (CAL) using CAL-228F/CAL2Rd primers (1,4), and partial histone H3 gene (H3) using CYLH3F/CYLH3R primers (3). Sequences of the amplified regions were deposited in GenBank under accessions KJ210596 to KJ210604. The BLAST analyses of the ITS sequences revealed 100% identity with several Cercospora species (e.g., C. apii [JX143532], C. beticola [JX143556], and C. zebrina [KC172066]), while sequences of CAL and H3 showed 100% identity solely with sequences of C. apii (JX142794 and JX142548). Based on combined morphological and molecular data, the pathogen infecting celery was identified as C. apii, which to our knowledge represents the first report of the presence of the causal agent of Cercospora early blight disease in Serbia. References: (1) I. Carbone and L.M. Kohn. Mycologia 91:553, 1999. (2) P. W. Crous and U. Braun. CBS Biodivers. Ser. 1:1, 2003. (3) P. W. Crous et al. Stud. Mycol. 50:415, 2004. (4) J. Z. Groenewald. Stud. Mycol. 75:115, 2013. (5) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA, 1990.

Prisijunkite prie mūsų
„Facebook“ puslapio

Išsamiausia vaistinių žolelių duomenų bazė, paremta mokslu

  • Dirba 55 kalbomis
  • Žolelių gydymas, paremtas mokslu
  • Vaistažolių atpažinimas pagal vaizdą
  • Interaktyvus GPS žemėlapis - pažymėkite vaistažoles vietoje (netrukus)
  • Skaitykite mokslines publikacijas, susijusias su jūsų paieška
  • Ieškokite vaistinių žolelių pagal jų poveikį
  • Susitvarkykite savo interesus ir sekite naujienas, klinikinius tyrimus ir patentus

Įveskite simptomą ar ligą ir perskaitykite apie žoleles, kurios gali padėti, įveskite žolę ir pamatykite ligas bei simptomus, nuo kurių ji naudojama.
* Visa informacija pagrįsta paskelbtais moksliniais tyrimais

Google Play badgeApp Store badge