Lithuanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2016-Dec

Food Fingerprinting: Metabolomic Approaches for Geographical Origin Discrimination of Hazelnuts (Corylus avellana) by UPLC-QTOF-MS.

Straipsnius versti gali tik registruoti vartotojai
Prisijungti Registracija
Nuoroda įrašoma į mainų sritį
Sven Klockmann
Eva Reiner
René Bachmann
Thomas Hackl
Markus Fischer

Raktažodžiai

Santrauka

Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for geographical origin discrimination of hazelnuts (Corylus avellana L.). Four different LC-MS methods for polar and nonpolar metabolites were evaluated with regard to best discrimination abilities. The most suitable method was used for analysis of 196 authentic samples from harvest years 2014 and 2015 (Germany, France, Italy, Turkey, Georgia), selecting and identifying 20 key metabolites with significant differences in abundancy (5 phosphatidylcholines, 3 phosphatidylethanolamines, 4 diacylglycerols, 7 triacylglycerols, and γ-tocopherol). Classification models using soft independent modeling of class analogy (SIMCA), linear discriminant analysis based on principal component analysis (PCA-LDA), support vector machine classification (SVM), and a customized statistical model based on confidence intervals of selected metabolite levels were created, yielding 99.5% training accuracy at its best by combining SVM and SIMCA. Forty nonauthentic hazelnut samples were subsequently used to estimate as realistically as possible the prediction capacity of the models.

Prisijunkite prie mūsų
„Facebook“ puslapio

Išsamiausia vaistinių žolelių duomenų bazė, paremta mokslu

  • Dirba 55 kalbomis
  • Žolelių gydymas, paremtas mokslu
  • Vaistažolių atpažinimas pagal vaizdą
  • Interaktyvus GPS žemėlapis - pažymėkite vaistažoles vietoje (netrukus)
  • Skaitykite mokslines publikacijas, susijusias su jūsų paieška
  • Ieškokite vaistinių žolelių pagal jų poveikį
  • Susitvarkykite savo interesus ir sekite naujienas, klinikinius tyrimus ir patentus

Įveskite simptomą ar ligą ir perskaitykite apie žoleles, kurios gali padėti, įveskite žolę ir pamatykite ligas bei simptomus, nuo kurių ji naudojama.
* Visa informacija pagrįsta paskelbtais moksliniais tyrimais

Google Play badgeApp Store badge