Lithuanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2005-Jun

Molecular evolution of flavonoid dioxygenases in the family Apiaceae.

Straipsnius versti gali tik registruoti vartotojai
Prisijungti Registracija
Nuoroda įrašoma į mainų sritį
Yvonne Gebhardt
Simone Witte
Gert Forkmann
Richard Lukacin
Ulrich Matern
Stefan Martens

Raktažodžiai

Santrauka

Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.

Prisijunkite prie mūsų
„Facebook“ puslapio

Išsamiausia vaistinių žolelių duomenų bazė, paremta mokslu

  • Dirba 55 kalbomis
  • Žolelių gydymas, paremtas mokslu
  • Vaistažolių atpažinimas pagal vaizdą
  • Interaktyvus GPS žemėlapis - pažymėkite vaistažoles vietoje (netrukus)
  • Skaitykite mokslines publikacijas, susijusias su jūsų paieška
  • Ieškokite vaistinių žolelių pagal jų poveikį
  • Susitvarkykite savo interesus ir sekite naujienas, klinikinius tyrimus ir patentus

Įveskite simptomą ar ligą ir perskaitykite apie žoleles, kurios gali padėti, įveskite žolę ir pamatykite ligas bei simptomus, nuo kurių ji naudojama.
* Visa informacija pagrįsta paskelbtais moksliniais tyrimais

Google Play badgeApp Store badge