Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Ecology 2007-Nov

Diversity of assimilatory nitrate reductase genes from plankton and epiphytes associated with a seagrass bed.

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Anita Adhitya
Florence I M Thomas
Bess B Ward

Atslēgvārdi

Abstrakts

Assimilatory nitrate reductase gene fragments were isolated from epiphytes and plankton associated with seagrass blades collected from Tampa Bay, Florida, USA. Nitrate reductase genes from diatoms (NR) and heterotrophic bacteria (nasA) were amplified by polymerase chain reaction (PCR) using two sets of degenerate primers. A total of 129 NR and 75 nasA clones from four clone libraries, two from each of epiphytic and planktonic components, were sequenced and aligned. In addition, genomic DNA sequences for the NR fragment were obtained from Skeletonema costatum and Thalassiosira weissflogii diatom cultures. Rarefaction analysis with an operational taxonomic unit cut-off of 6% indicated that diversity of the NR and nasA clone libraries were similar, and that sequencing of the clone libraries was not yet saturated. Phylogenetic analysis indicated that 121 of the 129 NR clones sequenced were similar to diatom sequences. Of the eight non-diatom sequences, four were most closely related to the sequence of Chlorella vulgaris. Introns were found in 8% of the Tampa Bay NR sequences; introns were also observed in S. costatum, but not T. weissflogii. Introns from within the same clone library exhibited close similarity in nucleotide sequence, position and length; the corresponding exon sequences were unique. Introns from within the same component were similar in position and length, but not in nucleotide sequence. These findings raise questions about the function of introns, and mechanisms or time evolution of intron formation. A large cluster of 14 of the 75 nasA sequences was similar to sequences from Vibrio species; other sequences were closely related to sequences from Alteromonas, alpha-proteobacteria and Marinomonas-like species. Biogeographically consistent patterns were observed for the nasA Tampa Bay sequences compared with sequences from other locations: for example, Tampa Bay sequences were similar to those from the South Atlantic Bight, but not the Barents Sea. The Tampa Bay NR clone libraries contained sequences that exhibited phylogenetic similarity with sequences from coastal New Jersey and Monterey Bay, USA. For both NR and nasA, the sequences formed phylogenetic clusters containing nitrate reductase gene fragments that were common to both plankton and epiphyte components, and sequences that were unique to just one component. The implication that some organisms may be differentially represented in epiphytic versus planktonic components of the community suggests that local environmental conditions may have ramifications for regulation of nitrate assimilation processes, community composition, and ecosystem function.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge