Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2020-Jul

Powdery Mildew Caused by Erysiphe sedi on Crassula capitella in China

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Qinen He
Qiangfeng Li
Luchao Bai
Liting Man
Wenjie Zhao
Xupeng Luo
Shancun Bao

Atslēgvārdi

Abstrakts

Crassula capitella Thunb. is a succulent used ornamentally in gardens and landscapes. In August 2019, severe powdery mildew infection was observed on C. capitella in a plant nursery, 1000m2 in area, in Xining (36°42'44.39" N, 101°44'50.50″E, alt. 2330 m), China. Approximately 35% of the leaves on a plant were symptomatic, and 80% of the plants were affected. The disease seriously reduced the ornamental value. A voucher specimen was deposited in the Herbarium of Plant Pathology at Qinghai University under accession no. QHU2019150. The pathogen formed superficial mycelia on leaves and stems producing conspicuous white colonies followed by necrosis of the leaf tissues and defoliation. Mycelia were amphigenous, white, effuse or in patches, persistent with lobed appressoria. The pathogen produced conidia singly on 2- to 3-celled conidiophores occurring on the ectophytic hyphae. Conidia were subcylindrical, measured 22 to 41 × 10 to 16 (n = 50) µm, and were produced singly on the tip of conidiophores. Conidiophores were erect and up to 110 µm long, foot-cells straight, cylindrical and 22 to 53 × 8 to 10 (n = 50) µm, followed by one to three shorter cells. Chasmothecia were not found. The fungus was identified as Erysiphe sedi based on morphology (Braun and Cook 2012). To confirm the identification, the ITS region was amplified. The ITS5/P3 and PM5/ITS4 primers were used to amplify the ITS region by nested PCR, and the cloned fragments were sequenced (Takamatsu and Kano 2001). The aligned ITS region sequences were deposited in GenBank (accession no. MT178769). A BLAST search analysis of the two sequences revealed 99.84% identity with E. sedi infecting Sedum aizoon in Russia (LC010045). A phylogenetic tree was constructed in MEGA6 with 15 ITS sequences using the neighbor-joining method with the Kimura 2-parameter substitution model. The sequence retrieved from powdery mildew on Crassula capitella in China clustered together with the sequences obtained from E. sedi on Sedum spp. with nearly 100 % concordance, placing it in the Erysiphe aquilegiae complex as defined by Takamatsu et al. (2015) and recently critically discussed by Shin et al. (2019). This complex comprises numerous Erysiphe spp. insufficiently resolved, especially when based only on ITS data. However, for the time being we follow Götz et al. (2019) and recognize E. sedi as a species of its own and identify the Chinese collection on Crassula capitella as E. sedi because of the morphological agreement and concordant ITS data. Pathogenicity tests were completed by gently pressing infected leaves onto five healthy leaves of C. capitella, Inoculated and non-inoculated plants were maintained separately in different rooms of a greenhouse at 22 to 25°C. Inoculated plants developed signs and symptoms after 12 days, whereas control plants remained symptomless. The morphology of the fungus on inoculated leaves was identical to that originally observed on diseased plants. To our knowledge, this is the first report of powdery mildew caused by Erysiphe sedi on C. capitella in China and worldwide, although E. sedi is reported to infect many Crassulaceous or Crassulaceae hosts (Cho et al. 2012, Götz et al. 2019).

Keywords: China; Crassula capitella; Erysiphe sedi; Powdery Mildew.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge