Страница 1 од 21 резултати
The activities of antioxidative enzymes, i.e. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), in the leaves and roots of Zea mays L. plants exposed to abiotic (methyl jasmonate, MJ, or/and copper, Cu) and biotic (Trigonotylus caelestialium)
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal
RNA-dependent RNA polymerases (RdRPs) in plants have been reported to be involved in post-transcriptional gene silencing (PTGS) and antiviral defense. In this report, an RdRP gene from maize (ZmRdRP1) was obtained by rapid amplification of cDNA ends (RACE) and RT-PCR. The mRNA of ZmRdRP1 was
Green leaf volatiles (GLV), which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize
Plant responses to herbivore insects involve direct and indirect defense with the production of signal molecules including jasmonic acid (JA) and its derivatives (e.g. methyl jasmonate, MeJA). In maize (Zea mays), root feeding by Diabrotica virgifera larvae activates an indirect defense mechanism,
Plants produce a wide variety of defensive metabolites to protect themselves against herbivores and pathogens. Non-protein amino acids, which are present in many plant species, can have a defensive function through their mis-incorporation during protein synthesis and/or inhibition of biosynthetic
Late embryogenesis abundant (LEA) proteins accumulate to high levels during the late stage of seed maturation and in response to water deficit, and are involved in protecting higher plants from damage caused by environmental stresses, especially drought. In the present study, a novel maize (Zea mays
Susceptibility of plants to abiotic stresses, including extreme temperatures, salinity and drought, poses an increasing threat to crop productivity worldwide. Here the drought-induced response of maize was modulated by applications of methyl jasmonate (MeJA) and salicylic acid (SA) to seeds prior to
Volicitin (17-hydroxylinolenoyl-l-Gln) present in the regurgitant of Spodoptera exigua (beet armyworm caterpillars) activates the emission of volatile organic compounds (VOCs) when in contact with damaged Zea mays cv Delprim (maize) leaves. VOC emissions in turn serve as a signaling defense for the
The indole-3-glycerol phosphate lyase Igl is the structural gene of volatile indole biosynthesis in the tritrophic interaction in maize. The gene is activated on transcriptional level with the same kinetics and to the same level by the fatty acid-amino acid conjugates (FAC's) volicitin
Some plant-derived anti-herbivore defensive proteins are induced by insect feeding, resist digestion in the caterpillar gut and are eliminated in the frass. We have identified several maize proteins in fall armyworm (Spodoptera frugiperda) frass that potentially play a role in herbivore defense.
Corn is one of the most widely grown crops throughout the world. However, many corn fields develop pest problems such as corn borers every year that seriously affect its yield and quality. Corn's response to initial insect damage involves a variety of changes to the levels of defensive enzymes,
UNASSIGNED
Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response. Maize produces a variety of terpenoids involved in defense response. Despite some
The maize (Zea mays L.) b-ZIP transcriptional activator Opaque-2(O2) regulates the synthesis of major endosperm proteins. In the o2 homozygote, 22 kDa zein prolamins and the b-32 ribosome-inactivating protein are greatly reduced in level. An in vitro endosperm culture system has been studied in
The isolation and characterization of cDNA and genomic clones encoding a proteinase inhibitor protein (MPI) in maize is reported. Accumulation of the MPI mRNA is induced in response to fungal infection in germinating maize embryos. The expression pattern of the MPI gene, in healthy and fungal