Страница 1 од 452 резултати
Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis
• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a
The regulatory domain of the bifunctional threonine-sensitive aspartate kinase homoserine dehydrogenase contains two homologous subdomains defined by a common loop-alpha helix-loop-beta strand-loop-beta strand motif. This motif is homologous with that found in the two subdomains of the biosynthetic
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine
In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways,
A three-dimensional structure comparison between the dimeric regulatory serine-binding domain of Escherichia coli D-3-phosphoglycerate dehydrogenase [Schuller, D. J., Grant, G. A., and Banaszak, L. J. (1995) Nat. Struct. Biol. 2, 69-76] and the regulatory domain of E. coli threonine deaminase
l-Threonine level in blood plasma is a biomarker of some diseases and nitrogen imbalance in the body. The determination of l-threonine is interesting and is required for diagnosis and management of inherited metabolic disorder. This is the first report of the specific enzymatic determination of
The enzyme threonine deaminase (TD) is a key regulatory enzyme in the pathway for the biosynthesis of isoleucine. TD is inhibited by its end product, isoleucine, and this effect is countered by valine, the product of a competing biosynthetic pathway. Sequence and structure analyses have revealed
BACKGROUND
Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission yeast, Xenopus, and human is
Although the control of carbon fixation and nitrogen assimilation has been studied in detail, little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper the isolation of a cDNA encoding threonine synthase is reported (TS; EC 4.2.99.2) from a leaf lambda ZAP
The TOUSLED (TSL) gene is essential for the proper morphogenesis of leaves and flowers in Arabidopsis thaliana. Protein sequence analysis predicts TSL is composed of a carboxyl-terminal protein kinase catalytic domain and a large amino-terminal regulatory domain. TSL fusion proteins, expressed in
Photolyase/blue-light photoreceptor family of proteins includes cyclobutane pyrimidine dimer photolyase, (6-4) photolyase and blue-light photoreceptors that were recently discovered in Arabidopsis thaliana, Sinapis alba and Chlamydomonas reinhardtii. Recently, we identified two human genes, hCRY1
Arabidopsis thaliana threonine deaminase (TD) is a tetramer composed of identical approximately 59600 Da subunits. TD activity has been shown to be inhibited by isoleucine. This effect is reversed by a large excess of valine. Nondenaturant gel filtration, polyacrylamide gel electrophoresis, and mass
Protein kinases frequently play key roles in the normal regulation of growth and development in eukaryotic organisms. As a consequence, aberrant expression or mutations in this family of molecules frequently result in transformation. Previously, we have conducted a screen to identify protein kinases
Genome-wide analysis of Arabidopsis thaliana with tyrosine kinase motif from animals predicted that tyrosine phosphorylation could be brought about only by dual-specificity protein kinases in plants. However, their regulation is poorly understood. In the present study, we have investigated the role