Mongolian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2011-Oct

First Report of Fusarium proliferatum Causing Root Rot on Soybean (Glycine max) in the United States.

Зөвхөн бүртгэлтэй хэрэглэгчид л нийтлэл орчуулах боломжтой
Нэвтрэх / Бүртгүүлэх
Холбоосыг санах ойд хадгалдаг
M Arias
G Munkvold
L Leandro

Түлхүүр үгс

Хураангуй

Fusarium spp. are widespread soilborne pathogens that cause important soybean diseases such as damping-off, root rot, Fusarium wilt, and sudden death syndrome. At least 12 species of Fusarium, including F. proliferatum, have been associated with soybean roots, but their relative aggressiveness as root rot pathogens is not known and pathogenicity has not been established for all reported species (2). In collaboration with 12 Iowa State University extension specialists, soybean roots were arbitrarily sampled from three fields in each of 98 Iowa counties from 2007 to 2009. Ten plants were collected from each field at V2-V3 and R3-R4 growth stages (2). Typical symptoms of Fusarium root rot (2) were observed. Symptomatic and asymptomatic root pieces were superficially sterilized in 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, and placed onto a Fusarium selective medium. Fusarium colonies were transferred to carnation leaf agar (CLA) and potato dextrose agar and later identified to species based on cultural and morphological characteristics. Of 1,230 Fusarium isolates identified, 50 were recognized as F. proliferatum based on morphological characteristics (3). F. proliferatum isolates produced abundant, aerial, white mycelium and a violet-to-dark purple pigmentation characteristic of Fusarium section Liseola. On CLA, microconidia were abundant, single celled, oval, and in chains on monophialides and polyphialides (3). Species identity was confirmed for two isolates by sequencing of the elongation factor (EF1-α) gene using the ef1 and ef2 primers (1). Identities of the resulting sequences (~680 bp) were confirmed by BLAST analysis and the FUSARIUM-ID database. Analysis resulted in a 99% match for five accessions of F. proliferatum (e.g., FD01389 and FD01858). To complete Koch's postulates, four F. proliferatum isolates were tested for pathogenicity on soybean in a greenhouse. Soybean seeds of cv. AG2306 were planted in cones (150 ml) in autoclaved soil infested with each isolate; Fusarium inoculum was applied by mixing an infested cornmeal/sand mix with soil prior to planting (4). Noninoculated control plants were grown in autoclaved soil amended with a sterile cornmeal/sand mix. Soil temperature was maintained at 18 ± 1°C by placing cones in water baths. The experiment was a completely randomized design with five replicates (single plant in a cone) per isolate and was repeated three times. Root rot severity (visually scored on a percentage scale), shoot dry weight, and root dry weight were assessed at the V3 soybean growth stage. All F. proliferatum isolates tested were pathogenic. Plants inoculated with these isolates were significantly different from the control plants in root rot severity (P = 0.001) and shoot (P = 0.023) and root (P = 0.013) dry weight. Infected plants showed dark brown lesions in the root system as well as decay of the entire taproot. F. proliferatum was reisolated from symptomatic root tissue of infected plants but not from similar tissues of control plants. To our knowledge, this is the first report of F. proliferatum causing root rot on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathologic Society, St. Paul, MN, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (4) G. P. Munkvold and J. K. O'Mara. Plant Dis. 86:143, 2002.

Манай facebook
хуудсанд нэгдээрэй

Шинжлэх ухаанаар баталгаажсан эмийн өвс ургамлын бүрэн мэдээллийн сан

  • 55 хэл дээр ажилладаг
  • Шинжлэх ухааны үндэслэсэн ургамлын гаралтай эдгэрэлт
  • Ургамлыг дүрсээр таних
  • Интерактив GPS газрын зураг - эмийн ургамлыг байршлаар нь тэмдэглэнэ (удахгүй)
  • Хайлттай холбоотой шинжлэх ухааны нийтлэлүүдийг уншина уу
  • Эмийн өвсийг үр нөлөөгөөр нь хайж олох
  • Мэдээллийн судалгаа, клиник туршилт, патентыг цаг тухайд нь сонирхож, зохион байгуул

Шинж тэмдэг эсвэл өвчний талаар бичиж, тус болох ургамлын талаар уншиж, өвслөг ургамлыг бичиж, өвчний эсрэг шинж тэмдгийг үзээрэй.
* Бүх мэдээлэл нь хэвлэгдсэн эрдэм шинжилгээний судалгаанд үндэслэсэн болно

Google Play badgeApp Store badge