Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Isoprene synthase and method of preparing isoprene using thereof

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
De link wordt op het klembord opgeslagen
Merja Oja
Anne Huuskonen
Marja Iimen
Laura Ruohonen
Outi Koivistoinen
Simon Jung
Jae Jo
Sang Lee

Sleutelwoorden

Octrooi-info

Octrooi nummer10287565
Gearchiveerd07/27/2015
Datum van octrooi05/13/2019

Abstract

Provided are a novel isoprene synthase derived from sweet potato and a method of preparing isoprene using the same, and more specifically, a novel isoprene synthase derived from sweet potato, a gene encoding the isoprene synthase, a host cell transformed with the gene, and a method of preparing isoprene using the same. The isoprene synthase of the present invention may have higher isoprene productivity as compared to isoprene synthases known in the related art to thereby be effectively used in isoprene biosynthesis and preparation of an isoprene polymer using the same.

Claims

The invention claimed is:

1. A recombinant vector comprising a codon-optimized polynucleotide encoding an isoprene synthase operably introduced therein, wherein the codon-optimized polynucleotide has a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 33.

2. The recombinant vector of claim 1, wherein the recombinant vector comprises a promoter for expressing said polynucleotide.

3. The recombinant vector of claim 2, wherein the promoter is selected from the group consisting of psbA2, trc, rbcL, petJ, psaA, psaB, tac, cpcB, petC and lac for expressing in cyanobacteria, wherein the promoter is selected from the group consisting of PGK1, TPI1, TDH, PDC1, FBA1, ENO1, ENO2, PYK1, ADH1, and TEF1 for expressing in yeast, wherein the promoter is selected from the group consisting of cbhl, gpdA, glaA, pdc and exlA for expressing in filamentous fungi, or wherein the promoter is CMV35S for expressing in plant cells.

4. The recombinant vector of claim 1, wherein the codon-optimized polynucleotide has the nucleotide sequence of SEQ ID NO: 3.

5. The recombinant vector of claim 1, wherein the codon-optimized polynucleotide has the nucleotide sequence of SEQ ID NO: 33.

6. A recombinant host cell comprising a recombinant vector comprising a codon-optimized polynucleotide encoding an isoprene synthase operably introduced therein, wherein the codon-optimized polynucleotide has a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 3 or SEQ ID NO: 33.

7. The recombinant host cell of claim 6, wherein the host cell is selected from the group consisting of cyanobacteria, yeast, filamentous fungi and plant cell.

8. The recombinant host cell of claim 7, wherein the cyanobacterium is unicellular cyanobacterium or multicellular cyanobacterium.

9. The recombinant host cell of claim 8, wherein the unicellular cyanobacterium is Synechocystis sp. or Synechococcus sp.

10. The recombinant host cell of claim 8, wherein the multicellular cyanobacterium is Gloeocapsa sp. or filamentous cyanobacterium sp.

11. The recombinant host cell of claim 10, wherein the filamentous cyanobacterium is selected from the group consisting of Nostoc sp., Anabaena sp., and Arthrospira sp.

12. The recombinant host cell of claim 7, wherein the yeast is selected from the group consisting of Saccharomyces sp., Pichia sp., Candida sp., Kazachstania sp., Kluyveromyces sp., Hansenula sp., Rhodosporidium sp., Cryptococcus sp., and Yarrowia sp.

13. The recombinant host cell of claim 7, wherein the filamentous fungus is selected from the group consisting of Trichoderma sp., Mucor sp., Mortierella sp., Neurospora sp., and Aspergillus sp.

14. The recombinant host cell of claim 7, wherein the plant cell is selected from the group consisting of Nicotiana sp., Catharantus sp., and Hyoscyamus sp.

15. The recombinant host cell of claim 6, further comprising one or more genes, which are introduced thereto, selected from the group of: (i) genes coding for the mevalonate pathway components, selected from the group of gene coding for mevalonate kinase (EC2.7.1.36), phosphomevalonate kinase (EC2.7.4.2), pyrophoshomevalonate decarboxylase (EC 4.1.1.33), acetoacetyl-CoA thiolase (EC2.3.1.9), HMG-CoA synthase (EC2.3.3.10), and HMG-CoA reductase (EC1.1.1.34); and (ii) genes coding for isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2).

16. The recombinant host cell of claim 6, further comprising a gene which is introduced thereto, wherein the gene is an idi gene coding for isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) and/or a gene coding for HMG-CoA reductase (EC1.1.1.34).

17. A method for preparing isoprene comprising: (a) culturing the recombinant host cell of claim 6, thereby producing isoprene; and (b) recovering the isoprene.

18. The method of claim 17, wherein the culturing of step (a) is performed on a medium comprising a carbon source selected from the group consisting of CO.sub.2, bicarbonate, glucose, glycerol, glycerin, dihydroxyacetone, yeast extract, biomass, molasses, sucrose, galactose, sorbose, sorbitol, xylose, arabinose, cellulose, xylan, lactose and oil.

Omschrijving

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the United States national phase of International Application No. PCT/KR2015/007851 filed Jul. 28, 2015, and claims priority to Korean Patent Application No. 10-2014-0095972 filed Jul. 28, 2014, the disclosures of which are hereby incorporated in their entirety by reference.

The Sequence Listing associated with this application is filed in electronic format via EFS-Web and is hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is 1700617_ST25.txt. The size of the text file is 167,544 bytes, and the text file was created on Jan. 26, 2017.

TECHNICAL FIELD

The present invention relates to a novel isoprene synthase and a method of preparing isoprene using the same, and more specifically, to a polynucleotide encoding the novel isoprene synthase, a recombinant host cell having the polynucleotide introduced, and a method of preparing isoprene using the same.

BACKGROUND ART

Isoprenoids are isoprene polymers that find use in pharmaceuticals, neutraceuticals, flavors, fragrances, and rubber products. Supplies of natural isoprenoid, however, are restricted due to ecological concerns. For this reason, and in order to provide isoprenoid compositions having less impurities and greater uniformity, isoprenoids such as rubber are often produced synthetically. Isoprene (2-methyl-1,3-butadiene) is a volatile hydrocarbon that is insoluble in water and soluble in alcohol. Commercially viable quantities of isoprene can be obtained by direct isolation from petroleum C5 cracking fractions or by dehydration of C5 isoalkanes or isoalkenes (Weissermel and Arpe, Industrial Organic Chemistry, 4.sup.th ed., Wiley-VCH, pp. 117-122, 2003). The C5 skeleton can also be synthesized from smaller subunits.

It would be desirable, however, to have a commercially viable method of producing isoprene that was independent of nonrenewable resources. Biosynthetic production of isoprene occurs by two distinct metabolic pathways (Julsing et al., Appl Microbiol Biotechnol, 75:1377-1384, 2007). In eukaryotes and archae, isoprene is formed via the mevalonate (MVA) pathway, while some eubacteria and higher plants produce isoprene via the methylerythritol phosphate (MEP) pathway. Isoprene emissions from plants are light and temperature-dependent and increase with the association to leaf development.

An isoprene-producing enzyme, isoprene synthase, has been identified in Aspen trees (Silver and Fall, Plant Physiol, 97:1588-1591, 1991; and Silver and Fall, J Biol Chem, 270:13010-13016, 1995) and is believed to be responsible for the in vivo production of isoprene from whole leaves. Bacterial production of isoprene has also been described (Kuzma et al., Curr Microbiol, 30:97-103, 1995; and Wilkins, Chemosphere, 32:1427-1434, 1996), and it varies in amount according to the phase of bacterial growth and the nutrient content of the culture medium (U.S. Pat. No. 5,849,970 to Fall et al.; and Wagner et al., J Bacteriol, 181:4700-4703, 1999).

The levels of isoprene obtainable through bacterial systems of the prior art, however, are insufficient for commercial uses. Thus, what the art needs is an effective and large scaled bacterial or microbial isoprene production process to provide feedstock for the manufacture of isoprene.

Accordingly, as a result of an effort for developing a method of preparing isoprene using a novel isoprene synthase gene having excellent isoprene productivity, the present inventors performed mining on a novel isoprene synthase gene, and confirmed that a recombinant microorganism transformed with the isoprene synthase gene has more excellent isoprene productivity than that of a host cell transformed with the isoprene synthase gene known in the art, thereby completing the present invention.

SUMMARY OF THE INVENTION

Technical Problem

An object of the present invention is to provide an isoprene synthase having excellent isoprene productivity and a gene encoding the isoprene synthase.

Another object of the present invention is to provide a recombinant host cell expressing an isoprene synthase and a method of preparing isoprene by culturing the recombinant host cell.

Solution to Problem

In order to achieve the foregoing objects, the present invention provides an isoprene synthase comprising an amino acid sequence of SEQ ID NO: 1; or an amino acid sequence having 70% or more sequence homology to the amino acid sequence of SEQ ID NO: 1.

In addition, the present invention provides a polynucleotide encoding the isoprene synthase as described above and a recombinant vector into which the polynucleotide is operably introduced.

Further, the present invention provides a recombinant host cell into which the polynucleotide or the recombinant vector as described above is introduced.

In addition, the present invention provides a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 3 optimized by codon optimization of the polynucleotide sequence encoding the isoprene synthase for blue-green algae (cyanobacteria); and a recombinant vector into which the polynucleotide is operably introduced.

In addition, the present invention provides a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 33 optimized by codon optimization of the polynucleotide sequence encoding the isoprene synthase for yeast; and a recombinant vector into which the polynucleotide is operably introduced.

Further, the present invention provides recombinant blue-green alga (cyanobacteria) or recombinant filamentous fungi; into which the polynucleotide comprising the nucleic acid sequence of SEQ ID NO: 3 as described above or the recombinant vector comprising the polynucleotide as described above is introduced.

Further, the present invention provides recombinant yeast; into which the polynucleotide comprising the nucleic acid sequence of SEQ ID NO: 33 as described above or the recombinant vector comprising the polynucleotide as described above is introduced.

In addition, the present invention provides a method of preparing isoprene including: (a) culturing the recombinant host cell as described above to prepare isoprene; and (b) obtaining the prepared isoprene.

Further, the present invention provides a method of preparing isoprene including: (a) culturing the recombinant blue-green algae (cyanobacteria), filamentous fungi or yeast as described above to prepare isoprene; and (b) obtaining the prepared isoprene.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a and FIG. 1b show an amino acid sequence alignment result of l. batatas-derived isoprene synthase with known isoprene synthases (SEQ ID NOS: 37-51).

FIG. 2 is directed to multiple sequence alignment (MSA) result showing the sequence around the substrate binding amino acids in isoprene synthase (SEQ ID NOS: 52-66).

FIG. 3 shows a multiple sequence alignment (MSA) result to around the substrate-binding amino acid sequence (SEQ ID NOS: 67-96).

FIG. 4 shows a phylogenetic tree among isoprene synthase candidates.

FIG. 5 shows a multiple sequence alignment (MSA) result of the isoprene synthase candidates.

FIG. 6 shows a map of pETDuet-1 vector.

FIG. 7 shows an expression of an isoprene synthase of isoprene synthase clone comprising a pBAT4 construct (trc promoter) of P. alba- and I. batatas-derived isoprene synthase genes.

FIG. 8 shows isoprene productivity of the pBAT4 construct (trc promoter) comprising P. alba- and I. batatas-derived isoprene synthase genes.

FIG. 9 shows an expression of an isoprene synthase of an E. coli strain transformed into a pETDuet-1 vector having five kinds of isoprene synthases (I. batatas, E. photiniifolius, P. alba, P. montana and A. hypogaea) introduced thereinto.

FIG. 10 shows isoprene productivity of an E. coli strain transformed into a pETDuet-1 vector, in which five kinds of isoprene synthases (I. batatas, E. photiniifolius, P. alba, P. montana and A. hypogaea) are inserted.

FIG. 11 shows inhibition in growth of an E. coli strain transformed into a pETDuet-1 vector, in which five kinds of isoprene synthases (I. batatas, E. photiniifolius, P. alba, P. montana and A. hypogaea) are inserted.

FIG. 12 shows time dependent isoprene productivity after expression of isoprene synthases in an E. coli strain transformed into a pETDuet-1 vector in which I. batatas of isoprene synthases and P. alba of isoprene synthases, respectably, are inserted.

FIG. 13 shows time dependent growth inhibition in of an E. coli strain transformed into a pETDuet-1 vector, in which I. batatas of isoprene synthases and P. alba of isoprene synthases, respectably, are inserted.

FIG. 14 shows plasmid for expression of IspS, IDI and HMG-CoA reductase in S. cerevisiae.

FIG. 15 shows plasmid for expression of IspS, and IDI in P. kudriavzevii.

FIG. 16 shows plasmids for expression of HMG-reductase in P. kudriavzevii.

FIG. 17 shows plasmid for expression of IspS in filamentous fungi.

FIG. 18 shows isoprene production by P. kudriavzevii transformants in YP medium containing 1% glucose (grey) or 1% glycerol (black) as the carbon source.

FIG. 19 shows plasmid pCIL105 for expression of I. batatas IspS in T. reesei.

FIG. 20 shows PCR analysis for the presence of the IspS expression cassette in T. reesei transformed with pCIL105. Wild type strain QM6a, parent and DDIW are negative controls.

DESCRIPTION OF THE INVENTION

Unless defined otherwise, all the technical and scientific terms used herein have the same meanings as those generally understood by persons skilled in the art to which the present invention pertains. Generally, the nomenclature used herein are well known and commonly employed in the art.

In a first aspect of the present invention, the present invention provides an isoprene synthase comprising an amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 70%, preferably at least 75%, more preferably at least 80%, still more preferably at least 85%, still more preferably at least 90%, still more preferably at least 95%, more and more preferably at least 98%, most preferably at least 99% sequence homology to the amino acid sequence of SEQ ID NO: 1.

The isoprene synthase belongs to a terpene synthase (TPS)-B family, and has an amino acid sequence specifically conserved in isoprene synthase, referred to as an "isoprene score" (Sharkey et al., Evolution, 67:1026, 2013). Important amino acids in the isoprene synthase are F338, S445, F485 and N505 based on amino acid sequences of the Populus alba- and Populus canescens-derived isoprene synthases, and phenylalanine of F338 and F485 are important amino acids to decrease the size of a substrate-binding site so that large substrates such as geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and the like, are not allowed to enter into an active site of an enzyme.

Therefore, the isoprene synthase of the present invention is characterized by comprising an amino acid sequence having 90% or more sequence homology to sequences at positions corresponding to RDRLMESFFW at position Nos. 257-266, FKLVTVLDDVYD at position Nos. 287-298, F369, SVS at position Nos. 394-396, FRLANDLSSSKAEIERGETANSI at position Nos. 433-455, and YQYGDAH at position Nos. 515-521 in an amino acid sequence of SEQ ID NO: 1. In addition, the isoprene synthase of the present invention is characterized by having at positions corresponding to the positions in SEQ ID NO: 1 at least one, preferably at least two, more preferably at least three, still more preferably at least four of the amino acids W266, F287, F369, F433, N453 and Y515.

The isoprene synthase of SEQ ID NO: 1 of the present invention comprises an amino acid sequence derived from sweet potato (Ipomoea batatas).

An amino acid sequence alignment result of I. batatas-derived isoprene synthase is shown in FIG. 1a and FIG. 1b, and an amino acid sequence alignment result of isoprene synthase candidates including P. alba-, A. hypogaea-derived isoprene synthases which are two known isoprene synthases, as a reference is shown in FIG. 2.

As a result of searching patent sequence database based on I. batatas-derived isoprene synthase having an amino acid sequence of SEQ ID NO: 1 according to the present invention, it was confirmed that the isoprene synthase derived from sweet potato of the present invention has 56% sequence homology to Quercus petraea-derived isoprene synthase (US Patent Application Publication No. 2013/0330709) and has low sequence homology to the isoprene synthase known in the related art.

In a second aspect of the present invention, the present invention provides a polynucleotide encoding the isoprene synthase.

In the present invention, the polynucleotide may be codon-optimized for microorganisms selected from the group consisting of E. coli, bacillus genus strain, blue-green algae (cyanobacteria), yeast and filamentous fungi. Also the introns may be removed from the original gene. In the present invention the term "polynucleotide" is used to mean the gene in its original or modified form or the coding sequence in its original or modified form.

The codon optimization in the present invention means that a codon having an average codon frequency less than 12% on the microorganism is substituted with a codon having an average codon frequency more than 12% on the microorganism.

In an exemplary embodiment of the present invention, with a target of a isoprene synthase polynucleotide of SEQ ID NO: 2, the codon optimization was performed to enable expression in either Synechocystis sp. (strain PCC6803), which is blue-green algae cyanobacteria, or E. coli (SEQ ID NO: 3). This same codon optimized nucleotide sequence for bacteria can be used also for filamentous fungi. In an exemplary embodiment of the present invention SEQ ID NO:3 was used for the filamentous fungus Trichoderma.

In another exemplary embodiment of the present invention, with a target of an isoprene synthase polynucleotide of SEQ ID NO: 2, the codon usage was optimized for S. cerevisiae (SEQ ID NO:33) to enable expression either in S. cerevisiae or Pichia (P. kudriavzevii).

Therefore, in a preferred embodiment of the present disclosure, the polynucleotide encoding the isoprene synthase might comprise any one nucleotide sequence of SEQ ID NOs: 2, 3 or 33, but the present invention is not limited thereto.

In a third aspect of the present invention, the present invention provides a polynucleotide encoding an isoprene synthase comprising a nucleotide sequence of SEQ ID NO: 3 by codon optimization of the polynucleotide encoding the isoprene synthase for blue-green algae (cyanobacteria), and E. coli, useful also for other bacteria and filamentous fungi, in particular Trichoderma and Aspergillus.

In a fourth aspect of the present invention, the present invention provides a polynucleotide encoding an isoprene synthase comprising a nucleotide sequence of SEQ ID NO: 33 by codon optimization of the polynucleotide encoding the isoprene synthase for Saccharomyces cerevisiae, useful also for Saccharomyces, Pichia and other yeasts.

In a fifth aspect of the present invention, the present invention provides a recombinant vector into which the polynucleotide is operably introduced; and a recombinant host cell into which the polynucleotide or the recombinant vector is introduced.

The recombinant vector in the present invention may contain a promoter for expressing the polynucleotide.

Examples of the promoter contained in the recombinant vector could include psbA2, trc, rbcL, petJ, psaA, psaB, tac, cpcB, petC or lac promoters for expression in blue-green algae (cyanobacteria), PGK1, TPI1, TDH, PDC1, FBA1, ENO1, ENO2, PYK1, ADH1, or TEF1 promoters for expression in yeast, preferably the promoter is selected from the group consisting of PGK1, TPI1 and TEF1 for expressing in yeast, cbh1, gpdA, glaA, pdc or exlA promoters for expression in filamentous fungi, and a CMV35S promoter for expression in a plant cell, but the present invention is not limited thereto.

In a preferred embodiment of the present invention, a polynucleotide sequence is contained in plasmids. In another preferred embodiment of the present invention, a polynucleotide sequence is incorporated into the genome of a host cell. In some preferred embodiments of the present invention, a host is selected from the group consisting of gram-positive bacterial cells, gram-negative bacterial cells, filamentous fungal cells, and yeast cells, but the present invention is not limited thereto.

In some preferred embodiments of the present invention, escherichia species (E. coli), pantoea species (Pantoea citrea), bacillus species (Bacillus subtilis), yarrowia species (Yarrowia lipolytica), and trichoderma species (Trichoderma reesei), but the present invention is not limited thereto. In some preferred embodiments, the host cell is cultured in a medium containing carbon sources selected from the group consisting of CO.sub.2, bicarbonate, glucose, glycerol, glycerine, dihydroxyacetone, yeast extract, biomass, molasses, sucrose, galactose, sorbose, sorbitol, xylose, arabinose, cellulose, xylan, lactose and oil, but not limited thereto.

Preferably, the host cell of the present invention may be blue-green algae (cyanobacteria), yeast, filamentous fungi, or plant cells.

In a preferred embodiment of the present invention, the filamentous fungi may be Trichoderma genus, Mucor genus, Mortierella genus, Neurospora genus or Aspergillus genus, advantageously the filamentous fungi is Trichoderma or Aspergillus genus and the plant cell may be Nicotiana genus, Catharantus genus or Hyroscyamus genus plant cells.

In a sixth aspect of the present invention, the present invention provides a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 3 by codon optimization of the polynucleotide encoding the isoprene synthase on blue-green algae (cyanobacteria), useful also for other bacteria and filamentous fungi, and a recombinant vector into which the polynucleotide is operably introduced; and a recombinant blue-green algae (cyanobacteria), bacteria or filamentous fungi into which the polynucleotide or the recombinant vector is introduced.

In a seventh aspect of the present invention, the present invention provides a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 33 by codon optimization of the polynucleotide encoding the isoprene synthase on Saccharomyces cerevisiae useful for Saccharomyces, Pichia and other yeasts, and a recombinant vector into which the polynucleotide is operably introduced; and a recombinant yeast into which the polynucleotide or the recombinant vector is introduced.

In the present invention, the recombinant vector may comprise psbA2, trc, rbcL, petJ, psaA, psaB, tac, cpcB, petC or lac promoter for expression in blue-green algae (cyanobacteria).

Preferably, the blue-green algae may be unicellular blue-green algae or multicellular blue-green algae. The unicellular blue-green algae may be Synechocystis genus or Synechococcus genus strain, and the multicellular blue-green algae may be Gloeocapsa genus or filamentous cyanobacteria.

In a preferred embodiment of the present invention, the filamentous cyanobacteria may be Nostoc genus, Anabaena genus or Arthospira genus, and the yeast may be Saccharomyces genus, Pichia genus, Candida genus, kazachstania genus, Kluyveromyces genus, Hansenula genus, Rhodosporidium genus, Cryptococcus genus or Yarrowia genus.

The polynucleotide is operably linked when being disposed with other nucleic acid sequences in a functional relationship. This may be polynucleotide and a regulatory sequence(s) linked in the manner of enabling polynucleotide expression when appropriate molecules (for example, transcriptional activation protein) are bound to the regulatory sequence(s). For example, nucleotide sequence for a pre-sequence or a secretion leader is operably linked to nucleotide sequence for a polypeptide when being expressed as a pre-protein participating in secretion of polypeptide; a promoter or an enhancer is operably linked to a coding sequence when having an influence on transcription of sequence; or a ribosome binding site is operably linked to a coding sequence when having an influence on transcription of sequence; or a ribosome binding site is operably linked to a coding sequence when being disposed so that translation is easily performed. In general, term: `operably linked` means that the linked nucleotide sequences are contacted with each other, or in the case of the secretion leader, contacted with the nucleotide sequence and present within a leading frame. However, the enhancer does not need to have a contact. The link of the sequences is performed by ligation (linkage) in a convenient restriction enzyme site. When the site does not exist, a synthetic oligonucleotide adaptor or a linker according to general method is used.

A method of inserting the polynucleotide into the genome of a host cell may be a generally known genetic engineering method, and a non-viral transfer method may include electroporation, lipofection, microinjection, biolistic, virosome, liposome, immuno-liposome, multivalent cation or lipid:nucleic acid conjugate, naked DNA, artificial virion and chemical-enhanced uptake of DNA. Sonoporation, for example, a method using a sonitron 2000 system (Rich-Mar) may be used for transfer of nucleic acids, and other representative nucleic acid transfer systems include Amaxa Biosystems (Cologne, Germany), Maxcyte, Inc. (Rockville, Md.) and BTX Molesular Syetem (Holliston, Mass.). The lipofection method is disclosed in U.S. Pat. Nos. 5,049,386, 4,946,787, and 4,897,355, and lipofection reagent is commercially available, for example, Transfectam.TM. and Lipofectin.TM.. Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Feigner (WO 91/17424 and WO 91/16024), and may be transferred to cells via ex-vivo administration or to target tissues via in-vivo administration. A method of preparing lipid:nucleic acid complex, containing targeted liposomes such as immunolipid complexes, is well known in the art (Crystal, Science., 270:404-410, 1995; Blaese et al., Cancer Gene Ther., 2:291-297, 1995; Behr et al., Bioconjugate Chem., 5:382389, 1994; Remy et al., Bioconjugate Chem., 5:647-654, 1994; Gao et al., Gene Therapy., 2:710-722, 1995; Ahmad et al., Cancer Res., 52:4817-4820, 1992; U.S. Pat. Nos. 4,186,183; 4,217,344; 4,235,871; 4,261,975; 4,485,054; 4,501,728; 4,774,085; 4,837,028; 4,946,787).

The tropism of a retrovirus may be altered by unification with foreign envelope proteins and thereby expand kinds of target cells. A lentiviral vector is a type of retroviral vector that is able to transduce or infect non-dividing cells and produce high viral titers. A retroviral gene transfer system is determined depends on the target tissue. The retroviral vector includes cis-acting long terminal repeats with packaging capacity for 6-10 kb of foreign sequence. The minimum cis-acting LTRs which are sufficient for replication and packaging of the vectors may be used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immunodeficiency virus (SIV), human immunodeficiency virus (HIV), and combinations thereof (Buchscher et al., J. Virol., 66:2731-2739, 1992; Johann et al., J. Virol., 66:1635-1640, 1992; Sommerfelt et al., Virol., 176:58-59, 1990; Wilson et al., J. Virol., 63:2374-2378, 1989; Miller et al., J. Virol., 65:2220-2224, 1991).

In a case of temporarily expressing a sucrose phosphorylase protein, an adenoviral based system may be frequently used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. When using the vectors, high titer and high levels of expression may be obtained and a mass-production is possible with a relatively simple system. In addition, Adeno-associated virus ("AAV") vectors are also used to transduce cells with target nucleic acids, for example, for in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy (West et al., Virology., 160:38-47, 1987; U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy., 5:793-801, 1994; Muzyczka, J. Clin. Invest., 94:1351, 1994), and a construction of recombinant AAV vectors were already known (U.S. Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol., 5:3251-3260, 1985; Tratschin, et al., Mol. Cell. Biol., 4:20722081, 1984; Hermonat & Muzyczka, PNAS., 81:6466-6470, 1984; Samulski et al., J Virol., 63:3822-3828, 1989). In clinical trials, at least six viral vector approaches are currently available for gene transfer, which utilize approaches that involve complementation of defective vectors by genes inserted into helper cell lines to generate the transducing agent. pLASN and MFG-S are examples of retroviral vectors that have been used in clinical trials (Dunbar et al., Blood., 85:3048, 1995; Kohn et al., Nat. Med., 1:1017, 1995; Malech et al., PNAS., 94:12133, 1997), and PA317/pLASN is the first therapeutic vector used in a gene therapy trial (Blaese et al., Science., 270:475-480, 1995), and transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors (Ellem et al., Immunol Immunother., 44(1):10-20, 1997; Dranoff et al., Hum. Gene Ther., 1:111-2, 1997).

Recombinant adeno-associated virus vectors (rAAV) are a promising alternative gene delivery systems based on the defective and nonpathogenic parvovirus adeno-associated type 2 virus. All vectors are derived from a plasmid that retains the AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene transfer and stable transgene delivery due to integration into the genomes of the transduced cell are key features for this vector system (Wagner et al., Lancet., 351:9117, 1998; Kearns et al., Gene Ther., 9:748-55, 1996).

In an eighth aspect of the present invention, the present invention provides a method of preparing isoprene including: (a) culturing the recombinant host cell as described above to prepare isoprene; and (b) obtaining the prepared isoprene.

The culturing of the step (a) may be performed in a medium containing carbon sources selected from the group consisting of CO.sub.2, bicarbonate, glucose, glycerol, glycerine, dihydroxyacetone, yeast extract, biomass, molasses, sucrose, galactose, sorbose, sorbitol, xylose, arabinose, cellulose, xylan, lactose and oil.

In a ninth aspect of the present invention, the present invention provides a method of preparing isoprene including: (a) culturing the recombinant blue-green algae (cyanobacteria), bacteria, recombinant filamentous fungi or yeast as described above to prepare isoprene; and (b) obtaining the prepared isoprene.

The methods may additionally include (c) polymerizing isoprene.

Unless otherwise indicated, the practice of the present invention involves conventional techniques commonly used in molecular biology, microbiology, and recombinant DNA, which are within the skill of the art. Such techniques are known to those of skill in the art and are described in numerous texts and reference works (See e.g., Sambrook et al., "Molecular Cloning: A Laboratory Manual," Second Edition, Cold Spring Harbor, 1989; and Ausubel et al., "Current Protocols in Molecular Biology," 1987).

Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. For example, Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d Ed., John Wiley and Sons, NY (1994); and Hale and Marham, The Harper Collins Dictionary of Biology, Harper Perennial, NY (1991) provides those of skill in the art with a general dictionary of many of the terms used in the invention. Although any methods and materials similar or equivalent to those described herein find use in the practice of the present invention, the preferred methods and materials are described herein. Accordingly, the terms defined immediately below are more fully described by reference to the Specification as a whole.

In combination with isoprene synthase expression of other genes contributing to isoprene production can be introduced into blue green algae (cyanobacteria), bacteria, filamentous fungi or yeast, cells. For example, the idi gene coding for isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) can be introduced to enhance conversion of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) that is the substrate of isoprene synthase. Also one or more genes coding for the mevalonate pathway components, mevalonate kinase (EC2.7.1.36), phosphomevalonate kinase (EC2.7.4.2), pyrophoshomevalonate decarboxylase (EC 4.1.1.33), acetoacetyl-CoA thiolase (EC2.3.1.9), HMG-CoA synthase (EC2.3.3.10) or HMG-CoA reductase (EC1.1.1.34) can be cloned under a suitable cyanobacteria, bacteria, filamentous fungi or yeast promoter that allow expression in these hosts. Two or more genes are expressed as a transcriptional fusion under the control or under the transcriptional control of a cyanobacteria or bacteria promoter. When two or more genes are expressed in, filamentous fungi or yeast, each gene is expressed under the control of an individual filamentous fungal or yeast promoter. Advantageous for expression of isoprene synthase is for example a combination of IDI and HMG reductase in filamentous fungi and in yeast, in particular in Pichia and Saccharomyces.

As used herein, the term 2-methyl-1,3-butadiene (CAS #78-79-5) ("isoprene") refers to the direct and final volatile C5 hydrocarbon product from the elimination of pyrophosphate from 3,3-dimethylallyl pyrophosphate (DMAPP), and does not involve the linking or polymerization of [an] IPP molecule(s) to [a] DMAPP molecule(s).

As used herein, the terms "isoprene synthase," and "IspS," refer to the enzymes that catalyze the elimination or pyrophosphate from diemethylallyl diphosphate (DMAPP) to form isoprene.

In some embodiments, the term "IspS" refers to a naturally occurring mature enzyme or portion thereof.

The present invention comprises proteins comprising an amino acid sequence having 70% or more identity with the amino acid sequence of Isoprene synthase from sweet potato, the proteins comprise "variant proteins".

In some preferred embodiments, variant proteins differ from a parent protein (e.g., set forth as SEQ ID NO:1) by a small number of amino acid residues. The number of differing amino acid residues may be one or more, preferably 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, or more amino acid residues. In some preferred embodiments, the number of different amino acids between variants is between 1 and 10. In some particularly preferred embodiments, related proteins and particularly variant proteins comprise at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% amino acid sequence identity. Additionally, a related protein or a variant protein as used herein refers to a protein that differs from another related protein or a parent protein in the number of prominent regions. For example, in some embodiments, variant proteins have 1, 2, 3, 4, 5, or 10 corresponding prominent regions that differ from the parent protein.

In present invention, the proteins comprising an amino acid sequence having 70% identity with amino acid sequence set forth as SEQ ID NO:1 of Isoprene synthase can be generated with several methods including but not limited to site-saturation mutagenesis, scanning mutagenesis, insertional mutagenesis, random mutagenesis, site-directed mutagenesis, and directed-evolution, as well as various other recombinatorial approaches.

As used herein the term "gene" refers to a polynucleotide (e.g., a DNA segment) that encodes a polypeptide and includes regions preceding and following the coding regions as well as intervening sequences (introns) between individual coding segments (exons). Polynucleotides introduced into host cells may comprise the coding region without introns and with or without the preceding or following regions of the original gene. Furthermore the codons may be modified to be more suitable for the host cell.

As used herein, "homology" refers to sequence similarity or identity, with identity being preferred. This homology is determined using standard techniques known in the art (See e.g., Smith and Waterman, Adv Appl Math, 2:482, 1981; Needleman and Wunsch, J Mol Biol, 48:443, 1970; Pearson and Lipman, Proc Natl Acad Sci USA, 85:2444, 1988; programs such as GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, Madison, Wis.; and Devereux et al., Nucl Acid Res, 12:387-395, 1984).

As used herein, an "analogous sequence" is one wherein the function of the polynucleotide is essentially the same as the polynucleotide based on sweet potato isoprene synthase (IspS). Additionally, analogous polynucleotides include at least 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% sequence identity with the amino acid sequence of the batate isoprene synthase. In additional embodiments more than one of the above properties applies to the sequence. Analogous sequences are determined by known methods of sequence alignment. A commonly used alignment method is BLAST, although as indicated above and below, there are other methods that also find use in aligning sequences.

Thus, "percent (%) nucleic acid sequence identity" is defined as the percentage of nucleotide residues in a candidate sequence that is identical to the nucleotide residues of the starting sequence (i.e., the sequence of interest). A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.

As used herein, "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid sequence or that the cell is derived from a cell so modified. Thus, for example, recombinant cells expresses genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all as a result of deliberate human intervention. "Recombination," "recombining," and generating a "recombined" nucleic acid are generally the assembly of two or more nucleic acid fragments wherein the assembly gives rise to a chimeric gene.

As used herein, the terms "amplification" and "gene amplification" refer to a process by which specific polynucleotides are disproportionately replicated such that the amplified polynucleotide becomes present in a higher copy number than was initially present in the genome. In some embodiments, selection of cells by growth in the presence of a drug (e.g., an inhibitor of an inhibitable enzyme) results in the amplification of either the endogenous gene encoding the gene product required for growth in the presence of the drug or by amplification of exogenous (i.e., input) sequences encoding this gene product, or both.

"Amplification" is a special case of nucleic acid replication involving template specificity. It is to be contrasted with non-specific template replication (i.e., replication that is template-dependent but not dependent on a specific template). Template specificity is here distinguished from fidelity of replication (i.e., synthesis of the proper polynucleotide sequence) and nucleotide (ribo- or deoxyribo-) specificity. Template specificity is frequently described in terms of "target" specificity. Target sequences are "targets" in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been designed primarily for this sorting out.

As used herein, the terms "amplifiable marker," "amplifiable gene," and "amplification vector" refer to a polynucleotide or a vector comprising a polynucleotide, which permits the amplification of that polynucleotide under appropriate growth conditions.

"Homologous sequences" as used herein means a nucleic acid or polypeptide sequence having 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 88%, 85%, 80%, 75%, or 70% sequence identity to another nucleic acid or polypeptide sequence when optimally aligned for comparison. In some embodiments, homologous sequences have between 85% and 100% sequence identity, while in other embodiments there is between 90% and 100% sequence identity, and in more preferred embodiments, there is 95% and 100% sequence identity.

As used herein "amino acid" refers to peptide or protein sequences or portions thereof. The terms "protein," "peptide," and "polypeptide" are used interchangeably.

As used herein, the term "heterologous protein" refers to a protein or polypeptide that does not naturally occur in the host cell. Examples of heterologous proteins include enzymes such as isoprene synthases. In some embodiments, the polynucleotides encoding the proteins are naturally occurring genes, while in other embodiments mutated and/or synthetic polynucleotides are used.

As used herein, "homologous protein" refers to a protein or polypeptide native or naturally occurring in a cell. In preferred embodiments, the cell is a Gram-negative cell, while in particularly preferred embodiments the cell is an Escherichia host cell.

An enzyme is "overexpressed" in a host cell if the enzyme is expressed in the cell at a higher level that the level at which it is expressed in a corresponding wild-type cell.

The terms "protein" and "polypeptide" are used interchangeability herein. The 3-letter code for amino acids as defined in conformity with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) is used through out this disclosure. It is also understood that a polypeptide may be coded for by more than one nucleotide sequence due to the degeneracy of the genetic code.

The term "mature" form of a protein or peptide refers to the final functional form of the protein or peptide. To exemplify, a mature form of sweet potato isoprene synthase includes the amino acid sequence of SEQ ID NO:1.

The term "precursor" form of a protein or peptide refers to a mature form of the protein having a prosequence operably linked to the amino or carbonyl terminus of the protein. The precursor may also have a "signal sequence" operably linked, to the amino terminus of the prosequence. The precursor may also have additional polynucleotides that are involved in post-translational activity (e.g., polynucleotides cleaved therefrom to leave the mature form of a protein or peptide).

"Naturally occurring enzyme" refers to an enzyme having the unmodified amino acid sequence identical to that found in nature. Naturally occurring enzymes include native enzymes, those enzymes naturally expressed or found in the particular microorganism.

The term "identical" in the context of two nucleic acids or polypeptide sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence, as measured using one of the following sequence comparison or analysis algorithms.

The term "optimal alignment" refers to the alignment giving the highest percent identity score. "Percent sequence identity," "percent amino acid sequence identity," "percent gene sequence identity," and/or "percent nucleic acid/polynucleotide sequence identity," with respect to two amino acid, polynucleotide and/or gene sequences (as appropriate), refer to the percentage of residues that are identical in the two sequences when the sequences are optimally aligned. Thus, 80% amino acid sequence identity means that 80% of the amino acids in two optimally aligned polypeptide sequences are identical.

The phrase "substantially identical" in the context of two nucleic acids or polypeptides thus refers to a polynucleotide or polypeptide that comprising at least 70% sequence identity, preferably at least 75%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 97%, preferably at least 98% and preferably at least 99% sequence identity as compared to a reference sequence using the programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two polypeptides are substantially identical is that the first polypeptide is immunologically cross-reactive with the second polypeptide. Typically, polypeptides that differ by conservative amino acid substitutions are immunologically cross-reactive. Thus, a polypeptide is substantially identical to a second polypeptide, for example, where the two peptides differ only by a conservative substitution. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions (e.g., within a range of medium to high stringency).

As used herein, "corresponding to," refers to a residue at the enumerated position in a protein or peptide, or a residue that is analogous, homologous, or equivalent to an enumerated residue in a protein or peptide. As used herein, "corresponding region," generally refers to an analogous position along related proteins or a parent protein.

As used herein, the terms "multiple sequence alignment" and "MSA" refer to the sequences of multiple homologs of a starting gene that are aligned using an algorithm (e.g., Clustal W).

As used herein, the terms "consensus sequence" and "canonical sequence" refer to an archetypical amino acid sequence against which all variants of a particular protein or sequence of interest are compared. The terms also refer to a sequence that sets forth the nucleotides that are most often present in a DNA sequence of interest. For each position of a gene, the consensus sequence gives the amino acid that is most abundant in that position in the MSA.

As used herein, the term "consensus mutation" refers to a difference in the sequence of a starting gene and a consensus sequence. Consensus mutations are identified by comparing the sequences of the starting gene and the consensus sequence obtained from a MSA. In some embodiments, consensus mutations are introduced into the starting gene such that it becomes more similar to the consensus sequence. Consensus mutations also include amino acid changes that change an amino acid in a starting gene to an amino acid that is more frequently found in an MSA at that position relative to the frequency of that amino acid in the starting gene. Thus, the term consensus mutation comprises all single amino acid changes that replace an amino acid of the starting gene with an amino acid that is more abundant than the amino acid in the MSA.

As used herein, the term "headspace" refers to the vapor/air mixture trapped above a solid or liquid sample in a sealed vessel.

Unless otherwise noted, all component or composition levels are in reference to the active level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources.

Enzyme components weights are based on total active protein. All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise.

EXAMPLES

Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are only for exemplifying the present invention and it will be obvious to those skilled in the art that the scope of the present invention is not construed to be limited to these examples.

Example 1

Genome Mining for Novel Isoprene Synthase Genetic Search

The isoprene synthase belongs to a terpene synthase (TPS)-B family, and has an amino acid specifically conserved in isoprene synthase, referred to as an "isoprene score" (Sharkey et al., Evolution, 67: 1026, 2013). Important amino acids in the isoprene synthase are F338, S445, F485 and N505 based on amino acid numbering of sequences of the Populus alba- and Populus canescens-derived isoprene synthases, and phenylalanines of F338 and F485 respectively are amino acids which have an important role to decrease a size of a substrate-binding site so that large substrates such as geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and the like, are not allowed to enter into an active site of an enzyme.

Bi-functional myrcene synthase of Humulus lupulus having low activity as compared to other isoprene synthases lacks F485. N505 has a critical role to determine an ion requirement of terpene synthases, and terpene synthase without an ion requirement has cationic lysine, serine, or asparagine positioned at position No. 505. S445 is present at a first position of triple serine motif, and other TPS-b protein usually has valine (Val) and isoleucine (Ile) in the middle of the triple serine motif; however, S445 present at the first position of the triple serine motif is conserved in almost all Tps-b family and thus, it is judged that S446 positioned in the middle of the triple serine motif is not important in preparation of isoprene.

In addition, W317 and Y565, which are amino acids present in almost all TPS family sequences, are essential to define a size of a substrate-bound pocket.

In addition, N489 is conserved in isoprene/ocimene clade of the Tps-B

In order to determine isoprene Synthase candidates, a homology-based database search was conducted. Isoprene synthase sequences using Query sequence are as follows:

1) Populus alba (white poplar, Uniport: Q50L36), Populus canescens (grey poplar, Uniprot: Q9AR86, PDB: 3N0G) and Pueraria montana var. lobata (kudzu wine, Uniprot: Q6EJ97);

2) Arachis hypogaea (peanut, SEQ ID No: 3), Glycine max (soybean, SEQ ID No:5 and SEQ ID No:7), Mucuna pruriens (velvet bean, SEQ ID No:9), Cajanus cajans (pigeon pea, SEQ ID No:11) and Quercus petraea (oak, SEQ ID No:13) derived from WO 2013/166,320A1;

3) Wisteria sp. (GenBank: AEK70969), Robinia pseudoacacia (GenBank: AEK70968), Melaleuca alternifolia (GenBank: AAP40638), Eucalyptus globulus (GenBank: BAF02831), Salix sp. (GenBank: AEK70970) and a myrcene synthase from Humulus lupulus (GenBank: ACI32638) derived from Sharkey list (Sharkey et al., Evolution, 67: 1026, 2013); and

4) 2-methyl-3-buten-2-ol (MBO) synthase (GenBank: AEB53064)(Gray et al., J Biol Chem, 286: 20582, 2011) derived from Pinus sabiniana.

In addition, several sequences derived from poplar genus were included as a reference.

The homology-based search was performed in GenBank protein databases (nr, pat and env_nr) using Uniport (SwissProt and TrEMBL) and blastp, and was performed in GenBank nucleotide databases (tsa_nt, env_nt and pat) using tblastn, and extracted when E-value is less than 1e-30.

Additionally, Uniprot/SwisProt sequences with InterPro domain annotation of "Terpene synthase, metal binding domain" protein family (PFAM: PF03936, Interpro: IPR005630) were retrieved.

The searched nucleotide sequence was translated into an amino acid sequence by GeneWise program.

tsa_nt (GenBank TSA1) which is a database including cDNA sequence through Transcriptomic study was included in Query database, and in order to increase a usable coverage of a plant genome data, transcriptomic data on plant genomes of which sequences are determined up to date was included.

Accordingly, total 9123 sequences were searched, wherein 278 sequences were searched in Uniprot/SwissProt, 1,989 sequences were searched in Uniprot/TrEMBL, 3,953 sequences were searched in GenBank nucleotide databases, and 2,905 sequences were searched in GenBank protein databases. In order to remove the repeated sequences, sequences having 80% homology with each other clustered.

In order to confirm functional diversity among the searched terpene synthases, multiple sequence alignment (MAS) and phylogenetic tree were made by using script in a unix environment. Sequences were aligned with respect to PFAM domain (PF03936) of a protein family and phylogenetic tree was made based on the MSA using FASTTREE program.

The active site of the isoprene synthase determined based on the structure of Populus canescens IpsS (PDB:3n0g) was marked to the MSA. The sequences were aligned by ClustalW, and a conserved phylogenetic tree was constructed with resampling using Genious tree builder.

As the final candidates of the plant-derived sequences, Ipomoea batatas-derived sequence and Elaeocarpus photiniifolius-derived sequence were determined.

Ipomoea batatas sequence has the key amino acids of isoprene synthases W317 (W266 in I. batatas), F338 (F287 in I. batatas), S445 (S394 in I. batatas), F485 (F433 in I. batatas), N505 (N453 in I. batatas) and Y565 (Y515 in I. batatas)

Multiple sequence alignment of I. batatas isoprene synthase sequence together with the reference sequences is shown in FIG. 1a and FIG. 1b. Alignment of the substrate binding amino acid positions is shown in FIG. 2.

Among the additional new candidates, Medicago sativa, Fragaria vesca subsp. Vesca, Morus notabilis, Populus trichocarpa, Dahlia pinnata, Sesamum indicum and Eucalyptus grandis lacked an amino acid at F338 position (amino acid numbering based on Populus alba isoprene synthase), and Mangifera indica-derived sequence had an important amino acid at F338, which seemed to have a function of the isoprene synthase.

A multiple sequence alignment (MSA) result to an active site sequence of the isoprene synthase candidates was shown in FIG. 3. Reference isoprene synthase sequences, and four sequences (tricyclene or beta-ocimene synthase) other than the reference isoprene synthases were also included as a reference, and identity % of the sequences was shown in FIG. 5.

In FIG. 5, the reference isoprene synthases were shown in bold black text, and sequences similar to the reference isoprene synthase were shown in black text, and the candidates known in the related art were shown in black text in italics. Isoprene synthase candidates (Ipomoea batatas and Elaeocarpus photiniifolius) having 4 points of isoprene scores were shown in white text with black background. Additional new candidate sequences were shown in black text with grey background, and candidates having F388 and 3 points of isoprene score were shown in white text with dark grey background. Sequences with confirmed other functions are shown in grey. The phylogenetic tree was provided with EC number, the biological name, and Blast E-values, and was visualized by Geneious software (FIG. 4).

Example 2

Cloning of Selected Isoprene Synthase Gene Candidate

Since Ipomoea batatas- and Elaeocarpus photiniifolius-derived nucleotide sequences selected in Example 1 above have a low homology to the known isoprene synthase encoding nucleotide sequences, the polynucleotides were cloned to measure an enzyme activity of protein to be expressed by the polynucleotides.

The isoprene synthase polynucleotide candidates were expressed in E. coli, isoprene prepared in a culture medium was measured to confirm an activity of the isoprene synthase, and the known isoprene synthase genes (P. alba, P. montana and A. hypogaea-derived isoprene synthase genes) were expressed in E. coli as a control group. Since cloning and culturing using cyanobacteria require quite a long time to work, they were conducted by selecting E. coli.

The genes for cloning were synthesized while removing a portion of encoding N-terminal sequence (N-terminal 40 aa of E. Pho and 48aa of I. bat) from the gene. In all genes, codon optimization was performed on Synechocystis sp. PCC6803 (SEQ ID NO: 3), and then codon optimization was performed on E. coli, by using GeneScript.

The fabricated construct was cloned in pBAT4 (Peranen J. et al, Anal. Biochem., 236:371-373, 1996) having trc promoter added thereto and cloned in pETDuet-1 (Novagen, USA, FIG. 6) having T7 promoter added thereto, so as to appropriate for expression in cyanobacteria, and when pBAT4 is used as a vector, the P. alba-derived polynucleotide and the I. batatas-derived polynucleotide were successfully cloned, and when pETDuet-1 is used as a vector, the I. batatas-, E. photiniifolius-, P. alba-, P. Montana- and A. hypogaea-derived isoprene synthase polynucleotides were cloned.

Example 3

Preparation of Isoprene in Recombinant Microorganism Containing Isoprene Synthase Gene Candidates

3-1: Transformation and Culturing

Plasmids containing isoprene synthase polynucleotide candidates cloned in Example 2 above were transformed into E. coli BL21, and expression of isoprene synthase was confirmed.

The selected transformants and parent strains were inoculated into an LB liquid medium containing 100 .mu.g/mL ampicillin and cultured at 30.degree. C. (or 37.degree. C.) overnight, then the culture medium was diluted to 1:50, cultured until the OD600 at 30.degree. C. is 0.6 to 0.7, and treated with IPTG so as to have a final concentration of 0.5 mM, thereby inducing an enzyme expression. The culturing was performed for 24 hours using a sealed 22 mL head-space bottle while inoculating the culture medium for 2 mL/bottle. At the same time, the culturing for protein analysis was performed using Erlenmeyer flask.

3-2: Detection and Quantification of Isoprene

Isoprene prepared in E. coli strain cloned with isoprene synthase was analyzed by solid-phase microexrction (SPME). An isoprene standard material containing 0.002% 4-tert-butylcatechcol as a stabilizer (Fluka nr529240 CAS 78-79-5) was used, and analyzed using divinylbenzene/carboxen/PDMS (DVB/CAR/PDMS) fiber (2 cm). CTC Combi PAL system (CTC Analytics AG, Switzerland) was used as a sampler, and the combination of Agilent 7890A gas chromatograph (GC, Agilent Technologies, USA) with a5975 C mass selective detector (MSD Agilent Technologies, USA) was used. In order to separate isoprene from ethanol which is volatile occurred during the culturing, HP-5, HP-35 (30 m) and BPX5 (60 m) columns were used, and isoprene was eluted by Lipodex (50 m) and HP-Innowax (60 m).

The elution time was 20 minutes, desorption time was 8 minutes, temperature in GC oven was between 40.degree. C. (4 mins) and 70.degree. C. (5.degree. C./min), and the total running time was 16.3 mins. Temperature of the injector was 250.degree. C., MS data were collected in m/z 35 to 350, and mass spectrum of isoprene was confirmed by comparison with NIST08 library.

The basic peak was m/z 67 and the mass peak was m/z 68, and other main fragments had m/z 53, 40 and 39. Calibration curves were measured by spike of isoprene in three different media (LB, BG11 and BG11 without Na.sub.2CO.sub.3). The medium had a concentration area of 2.about.85 ng/2 mL, and the spike was performed on the sample with ethanol having the same amount (10 .mu.l/bottle). The sample was put into a 22 mL head-space bottle used in both of the culturing and the analysis and was analyzed. The quantitative limit of the present invention was 0.5 ng/ml, and the detection limit was lower than the quantitative limit.

Expression in the pBAT4 constructs (trc promoter) of the P. alba- and I. batatas-derived isoprene synthase genes before and after the induction of the isoprene synthase was shown in Criterion TGX 4-20 gel with GelCode Blue dye (FIG. 7). Expression of the isoprene synthase and preparation of isoprene were confirmed by culturing five clones (A to E) of two constructs. After the induction, preparation of P. alba-derived isoprene synthase (64 kDa) was clearly confirmed, but I. batatas lysate (62 kDa) was not clearly confirmed due to high viscosity. After 24 hours of the induction, the isoprene prepared by the recombinant E. coli was analyzed by SPME method. As a result, it could be confirmed from FIG. 8 that the recombinant E. coli-derived sample containing l. batatas-derived isoprene synthase had particularly high isoprene productivity.

As a result of confirming expression of the isoprene synthase of the isoprene synthase clone of five kinds (I. batatas, E. photiniifolius, P. alba, P. montana and A. hypogaea) using pETDuet-1 vector, it could be confirmed from FIG. 9 that after 24 hours of the induction, all strains excluding E. photiniifolius showed clear isoprene synthase production.

As a result of analyzing the isoprene productivity in the five kinds of recombinant E. coli's after 24 hours of the induction, it could be confirmed from FIG. 10 that high isoprene productivity was shown in I. batatas- and P. alba-derived isoprene synthases, in particular, the highest isoprene productivity was shown in I. batatas-derived isoprene synthase, and in E. photiniifolius, an enzyme production was not confirmed in Criterion TGX 4-20 gel, but isoprene was prepared. The preparation of isoprene was not confirmed in A. hypogaea.

In addition, as a result of confirming growth of each recombinant E. coli strain with OD.sub.600 values, it was confirmed that the growth of each strain was slightly inhibited by expression of the recombinant enzyme (FIG. 11).

Further, FIG. 12 shows time dependent isoprene productivity after expression of isoprene synthases in an E. coli strain transformed into a pETDuet-1 vector in which I. batatas of isoprene synthases and P. alba of isoprene synthases, respectably, are inserted. It could be confirmed that isoprene was accumulated steadily after expression of isoprene synthases and isoprene was also produced in an E. coli strain without inducing expression by using IPTG.

As a result of confirming time dependent growth of strain by using OD.sub.600 value, after inducing expression by using IPTG in recombinant E. coli including IpS derived from I. batatas and recombinant E. coli including IpS derived from P. alba, growth of strain steadily decreases compared to strain without inducing treatment by using IPTG (FIG. 13).

Example 4

Synechocystis sp. Cells Expressing Isoprene Synthase

Synechocystis sp. PCC6803 is used as the parent strain and is referred to as the wild type (wt). The wt strain and transformants are maintained on BG-11 agar and in BG-11 liquid medium buffered with Hepes to pH 7.5 and is supplemented with 10 mM bicarbonate and with the antibiotics kanamycin, spectinomycin or chloramphenicol as appropriate. Instead of or in addition to bicarbonate, CO.sub.2 enriched cultivation conditions are used to provide the carbon source. Synechocystis is cultivated at 30.degree. C. under illumination (10-300 .mu.mol photons m.sup.-2 s.sup.-1).

Synechocystis sp. is transformed by natural transformation using previously described methods. The presence of the transforming DNA is confirmed by PCR.

Constructs are designed for the expression of isoprene synthase in cyanobacteria. The isoprene synthase is expressed under the transcriptional control of an E. coli or a Synechocystis promoter, which allows expression of isoprene synthase in cyanobacteria. As an example, the E. coli trc or lac promoters or Synechocystis sp. psbA promoter and Synechocystis terminator or E. coli rrnB terminator or phage T7 terminator are used. The I. batatas isoprene synthase nucleotide sequence (SEQ ID: No. 2) was codon optimized for expression in Synechocystis sp. PCC6803 and synthesized by GenScript (Piscataway, N.J., USA). The expression cassettes for isoprene synthase and the antibiotic resistance marker are flanked by homologous sequences corresponding to a neutral site in the Synechocystis sp. genome to facilitate integration of the transforming DNA into the genome by homologous recombination.

Neutral sites e.g. between slr0168 and slr0338 in the Synechocystis sp. PCC6803 genome are suitable target loci for introducing the isoprene synthase. Other target sites can be chosen in order to knock out genes that potentially interfere with production of the desired product and its precursors. Genes required for biosynthesis of storage compounds such as glgA or glgC, involved in glycogen biosynthesis, are examples of such genes.

Example 5

Synechocystis sp. Cells Expressing One or More Enzymes of the Mevalonate Pathway

In combination with isoprene synthase expression other genes contributing to isoprene production are introduced into Synechocystis cells. For example, the idi gene coding for isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) is introduced to enhance conversion of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) that is the substrate of isoprene synthase. Optionally one or more genes coding for the mevalonate pathway components, mevalonate kinase (EC2.7.1.36), phosphomevalonate kinase (EC2.7.4.2), pyrophoshomevalonate decarboxylase (EC 4.1.1.33), acetoacetyl-CoA thiolase (EC2.3.1.9), HMG-CoA synthase (EC2.3.3.10) or HMG-CoA reductase (EC1.1.1.34) are cloned under an E. coli or Synechocystis promoter that allows expression in cyanobacteria. Two or more genes are expressed as a transcriptional fusion under the control of under the transcriptional control of an E. coli or a Synechocystis promoter. Each open reading frame is preceded by a ribosome binding site (RBS) to allow independent translation of the polypeptides. The above mentioned polynucleotides and the antibiotic resistance marker are flanked by homologous sequences corresponding to the target locus of choice in the Synechocystis sp. genome to allow integration of the transforming construct into the genome.

Example 6

Synechocystis sp. Cells Over-Expressing One or More Polypeptides of the Non-Mevalonate Pathway

Although cyanobacteria possess the non-mevalonate pathway for synthesising isoprenoid precursors, overexpression of selected pathway components from homologous or heterologous sources will benefit isoprene production. Constructs are designed for the overexpression of the non-mevalonate pathway genes, deoxyxylulose-5-phosphate synthase (DXP synthase; EC2.2.1.7), DXP reductioisomerase (EC1.1.1.267), MEP-cytidyltransferase (EC2.7.7.60), CPD-ME-kinase (EC2.7.1.148), MECDP synthase (1.17.7.1), HMBDP synthase (EC1.17.7.1), HMBDP reductase (EC1.17.1.2), and isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) in Synechocystis sp. are designed using the same principle as described for the mevalonate pathway genes. One or more non-mevalonate pathway genes are introduced into Synechocystis sp. in combination with isoprene synthase expression.

Example 7

Production of Isoprene by Recombinant Synechocystis Cells Expressing Isoprene Synthase

Synechocystis transformants expressing isoprene synthase and optional other genetic modifications are tested for isoprene production using an in vivo assay. Wild type cells are studied in parallel as controls. As an example, cells are grown for 4 days at 30.degree. C. with 100 rpm shaking under continuous illumination in BG11 liquid medium supplemented with bicarbonate as the carbon source and the appropriate antibiotics. Cells from 20 ml cultivation are harvested by centrifugation and suspended in 8 ml of BG11 medium supplemented with bicarbonate and antibiotics as appropriate in 20 ml GC-MS bottles which are sealed air-tight. When isoprene synthase is expressed under control of an IPTG inducible promoter 0.5 mM IPTG is added into to medium to induce isoprene production. Cultivations are also carried out without IPTG. The bottles are incubated at 30.degree. C. with 100 rpm shaking for up to 240 h. Samples are taken at regular intervals during the cultivation. At each time point a bottle is removed, the cultivation is heated at 40.degree. C. and isoprene is measured from the head space of the bottle using the GC-MS method described earlier for E. coli.

Isoprene production into the medium in aerobic cultures of Synechocystis is also analysed. The culture medium is sampled periodically and the samples are transferred into GC-MS vials, heated at 40.degree. C., and isoprene is measured off-line from the head space of the bottle using the GC-MS method described earlier for E. coli.

Example 8

Production of Isoprene by Recombinant Synechocystis Cells in a Bioreactor

The inocula for bioreactor cultivation are grown at 30.degree. C. with 100 rpm shaking under continuous illumination in BG11 liquid medium supplemented with bicarbonate as the carbon source and the appropriate antibiotics. The inoculum is transferred into BG11 medium in a photobioreactor. Bicarbonate or CO.sub.2 gas is used as the carbon source. The photobioreactor is equipped with adjustable lightning and controllable gas inlet and outlet. The cells are grown at 30.degree. C. and the cultivation is mixed with agitation or gas bubbling. Isoprene production is analysed off-line. The culture medium is sampled periodically and the samples are transferred into GC-MS vials, heated at 40.degree. C., and isoprene is measured from the head space of the bottle using the GC-MS method described earlier for E. coli. Isoprene is harvested from the bioreactor flushing the reactor periodically with CO.sub.2 as described (Bentley and Melis, 2012, Biotechnol Bioeng 109:100-109).

Example 9

Construction of Isoprene Producing Saccharomyces cerevisiae Strains

Constructs are designed for the expression of isoprene synthase in S. cerevisiae. The isoprene synthase nucleotide sequence is expressed from an autonomously replicating multi-copy vector containing a 2-micron replication origin or an ARS sequence, a centromeric vector, or integrated into the genome in one or more copies. Optional other genetic modifications such as overexpression of isopentenyl-diphosphate delta-isomerase (IDI) or mevalonate pathway or non-mevalonate pathway components are also introduced into S. cerevisiae. The constructs can be assembled by traditional cloning methods or by recombination cloning. For example, S. cerevisiae strain FY834 is used for recombination cloning (Winston, Dollard and Ricupero-Hovasse, 1995). S. cerevisiae strain H2798 (ura-) is the parental strain which is used for the production of ispS isoprene.

A vector, named SP17, containing three S. cerevisiae promoter-terminator pairs cloned into the pRS426 plasmid, is used. The truncated Hmg-CoA reductase (Polakowski et al. 1998, Appl Microbiol Biotechnol. 49:66-71) is amplified by PCR using the oligonucleotides

TAGCAATCTAATCTAAGTTTTAATTACAAACTCGAGTAAAATGGACCAATTGGTGAAAACTG (SEQ ID NO: 4) and CCAAACCTCTGGCGAAGAAGTCCAAAGCTGTCGACGGATTTAATGCAGGTGACGG (SEQ ID NO: 5) and cloned into a SP17 vector between e.g. the TEF1 promoter and ADH1 terminator by homologous recombination. The IspS nucleotide sequence of I. batatas (SEQ ID NO: 2) is codon optimized for expression in S. cerevisiae and synthesized by GenScript, amplified by PCR, and inserted between e.g. the PGK1 promoter and PGK1 terminator. The IDI nucleotide sequence is amplified by PCR and cloned between e.g. TPI1 promoter and CYC1 terminator by homologous recombination. Schematic representation of the construct is shown in FIG. 14. S. cerevisiae are transformed using the LiAc/PEG method (Gietz and Woods, 2002, Methods in Enzymology 350: 87-96). The resulting plasmid is transformed into S. cerevisiae strain and selected on synthetic complete medium lacking uracil (SCD-Ura). The presence of the transforming DNA is confirmed by PCR.

The S. cerevisiae IspS transformants are propagated aerobically at 30.degree. C. with 250 rpm shaking in SC-Ura medium containing glucose, galactose or glycerol as the carbon source to produce the biomass for isoprene production. For isoprene production, aliquots of the precultures are transferred into fresh SC-Ura medium containing glucose, galactose or glycerol in tightly sealed flasks, which enable harvesting of isoprene. The bottles are incubated at 30.degree. C. with 250 rpm shaking for up to 96 h. Samples are taken at regular intervals during the cultivation. At each time point a bottle is removed, the cultivation is heated at 40.degree. C. and isoprene is measured from the head space of the bottle using the GC-MS method described earlier for E. coli.

Example 10

Construction of Pichia kudriavzevii Strains for Isoprene Production

Synthetic I. batatas IspS gene, optimized for expression in S. cerevisiae, was obtained from GenScript (Piscataway, N.J., USA). The IspS polynucleotide was introduced into P. kudriavzevii strain ATCC32196 under the PGK1 or TDH1 promoters of P. kudriavzevii together with the isopentenyl-diphosphate delta-isomerase (IDI) gene. The P. kudriavzevii PGK1 promoter and S. cerevisiae MEL5 terminator controlled the expression of the hygromycin resistance marker that was used for selection of transformants. The Pk promoters were amplified from the genomic DNA of P. kudriavzevii strain ATCC32196 essentially as described in US 2009/0226989 A1. Terminators from S. cerevisiae and P. kudriavzevii were used. The marker cassette was flanked by loxP sites to enable removal and re-use of the marker. The isoprene synthase and marker expression cassettes were flanked by homologous sequences corresponding to the P. kudriavzevii GPD1 locus to enable integration in the GPD1 locus. The resulting construct contained P.k. GPD1 5' flanking region-P.k. PGK1 promoter-MEL5 or hygromycin marker-MEL5 terminator-P.k. promoter-isoprene synthase nucleotide sequence-P.k. or S.c. terminator-P.k. promoter-IDI-P.k. or S.c.-P.k. GPD1 3' flanking region (FIG. 15).

A HMG-CoA reductase (Polakowski et al. 1998, Appl Microbiol Biotechnol. 49:66-71) was co-expressed with the isoprene synthase in P. kudriavzevii under control of the P. kudriavzevii promoter. The resulting construct contained P.k. PDC1 3' flanking region-P.k. promoter-MEL5 or hygromycin marker-MEL5 terminator-P.k. promoter-HMG-CoA reductase nucleotide sequence-P.k. terminator-P.k. PDC1 5' flanking region (FIG. 16).

The resulting constructs were transformed into P. kudriavzevii strain ATCC32196 using the LiAc/PEG method. The transformants were selected based on blue colour on yeast peptone dextrose (YPD) medium containing 5-bromo-4-chloro-3-indolyl-.alpha.-D-galactopyranoside (X-alpha-gal) or for growth on melibiose, or for growth on YPD medium containing hygromycin essentially as described in US 2009/0226989 A1. The presence of the transforming DNA was confirmed by PCR. Transformants were cultured aerobically on synthetic complete medium or yeast peptone (YP) medium containing glucose, fructose or glycerol as the carbon source. For isoprene analysis, aliquots of the precultures are transferred into fresh medium in tightly sealed GC-MS bottles retaining isoprene. The bottles were incubated at 30.degree. C. with 100 rpm shaking for up to 96 h. Samples were taken at regular intervals during the cultivation. At each time point a bottle was removed, the cultivation was heated at 40.degree. C. and isoprene was measured from the head space of the bottle using the GC-MS method described earlier for E. coli except that the medium used for the calibration curve was YP-medium containing 0.5% ethanol.

The expression vector for an N-terminally truncated S. cerevisiae HMG1 was named pPK-HMG (FIG. 16, SEQ ID NO: 6) and targeted for integration into the P. kudriavzevii PDC1 locus. The N-terminally truncated HMG1 gene (SEQ ID NO: 34) was amplified from genomic DNA of S. cerevisiae W303 by PCR using primers (5'-AGCGCGGATCCATGGACCAATTGGTGAAAACTGAAG) (SEQ ID NO: 7) and (5'-AGCGCGGATCCCACATGGTGCTGTTGTGCTTC) (SEQ ID NO: 8) and expressed under the control of the P. kudriavzevii PGK1 promoter and S. cerevisiae ADH1 terminator. The expression construct with the MEL5 marker and P. kudriavzevii PDC1 homology regions was released with NotI from plasmid pPK-HMG and transformed into P. kudriavzevii VTT-C-79090T (ATCC32196) using the lithium acetate method and colonies were screened based on blue colour on YPD-agar containing 40 .mu.g/ml 5-bromo-4-chloro-3-indolyl-.alpha.-D-galactopyranoside. A transformant Pk/HMG1 was selected for continuation.

The vector for expression of I. batatas IspS and S. cerevisiae IDI1 was named pPK-IspS-IDI (FIG. 15; SEQ ID NO: 9). The integration was targeted to the P. kudriavzevii GPD1 locus. The P. kudriavzevii GPD1 homology regions were amplified by PCR from genomic DNA of P. kudriavzevii VTT-C-79090T (ATCC32196). The I. batatas IspS gene with a C-terminal StrepII-tag was codon optimized for expression in S. cerevisiae and synthesized by Genscript (Hongkong) (SEQ ID NO: 33). I. batatas IspS was expressed under control of the P. kudriavzevii PGK1 promoter and S. cerevisiae ADH1 terminator. The IDI1 gene (SEQ ID NO: 35) was amplified by PCR from genomic S. cerevisiae DNA using primers 918IDISc-F (5'-CTTTTTACAACAAATATAAAACCAAAAGCGGCCGCTTAATTAAAAAATGACTGCCGACAACAATAGTAT- G) (SEQ ID NO: 10) and C031_919new_IDISc_R (5'-AGAGACATGGGAGATCCCGCGGGCGGCCGCTTAATTAATTATAGCATTCTATGAATTTGCC) (SEQ ID NO:11), and placed under the control of the P. kudriavzevii TDH1 promoter and S. cerevisiae PGK1 terminator. The expression construct with a hygromycin resistance marker and P. kudriavzevii GPD1 homology regions was released with NotI from plasmid pPK-IspS-IDI and transformed into P. kudriavzevii VTT-C-79090T (ATCC32196) and into P. kudriavzevii Pk/HMG1 using the lithium acetate method (Gietz et al. 1992, Nucleic Acids Res 20:1425-1425) and colonies were selected on YPD-agar containing 450 .mu.g/ml hygromycin B as the selective agent. Transformed colonies Pk/IspS+IDI1-69, Pk/IspS+ID1I-72, Pk/ISpS+IDI1-74 and Pk/IspS+IDI1+HMG1-79 were isolated and tested for isoprene production.

P. kudriavzevii VTT-C-79090T (ATCC32196) and the Pk/HMG1, Pk/IspS+IDI1 and Pk/IspS+IDI1+HMG1 transformants were grown in YPD medium o/n at 30.degree. C. Cells were collected by centrifugation and suspended in YP-1% glucose or YP+1% glycerol to an OD.sub.600=3.2 ml aliquots were sealed in 22 ml headspace bottles and incubated o/n at 30 with 100 rpm shaking. Isoprene production was measured as described above except that the isoprene standards were prepared in YP-medium containing 0.5% ethanol. Isoprene concentrations measured are shown in FIG. 18. FIG. 18. shows isoprene production by P. kudriavzevii transformants in YP medium containing 1% glucose (grey) or 1% glycerol (black) as the carbon source. All transformants expressing IspS and IDI1 produced isoprene while the parent strain and the strain expressing only HMG1 did not produce detectable isoprene. The amount of isoprene measured ranged from 1 to 12 .mu.g in the 2 ml samples depending on the strain and cultivation conditions. More isoprene was produced on YP-glycerol medium than on YP-glucose medium. The presence of HMG1 in addition to IspS and IDI1 increased isoprene production approximately 3-fold in YP-glycerol medium and 2-fold in YP-glucose medium.

Example 11

Construction of Trichoderma reesei Strains Overexpressing an Isoprene Synthase for Isoprene Production I

Synthetic I. batatas IspS gene, optimized for expression in T. reesei, is obtained from GenScript (Piscataway, N.J., USA) (SEQ ID NO: 36). The codon optimized IspS polynucleotide was introduced into T. reesei strain Rut-30 under the control of gpdA promoter of Aspergillus nidulans or under the control of the cbh1 promoter of T. reesei.

The resulting constructs contained the T. reesei cbh1 5' flank region-cbh1 promoter-isoprene synthase-nucleotide sequence A. nidulans gpdA promoter hygromycin resistance marker (hph) and A. nidulans trpC terminator-T. reesei cbh1 terminator and 3' flank region. The resulting constructs were transformed into T. reesei using the PEG-mediated protoplast transformation. The transformants were selected based on hygromycin resistance. Instead of hph, the acetamidase A. nidulans amdS gene can be used as the selective marker and the transformants were selected based on the ability to use acetamide as the sole nitrogen source. Alternatively, the isoprene synthase was expressed under the A. nidulans gpdA promoter. The codon optimized isoprene synthase polynucleotide was cloned into an expression vector containing the A. nidulans gpdA promoter-isoprene synthase-nucleotide sequence-A. nidulans trpC terminator-A. nidulans gpdA promoter hygromycin resistance marker (hph) and A. nidulans trpC terminator. Schematic view of the plasmid used for transformation was shown in FIG. 16. The transformants were purified from colonies originating from single spores, and the integration of the expression cassette into the genome was confirmed by PCR amplification of the expression cassette. The polynucleotides were integrated into the cbh1 locus or into a non-homologous site in T. reesei genome.

T. reesei transformants containing the ispS polynucleotide were cultivated in shake flasks in medium containing 7.6 g/L (NH.sub.4).sub.2SO.sub.4 15.0 g/L KH.sub.2PO.sub.4, 2.4 mM MgSO.7H.sub.2O, 4.1 mM CaCl.sub.2.H.sub.20, 3.7 mg/L CoCl.sub.2, 5 mg/L FeSO.sub.4.7H.sub.20, 1.4 mg/L ZnSO.sub.4.7H.sub.2O, 1.6 mg/L MnSO.sub.4.7H.sub.2O, and a 10 g/L carbon source or a mixture of carbon sources selected from cellulose, xylan, glucose, lactose, glycerol, galactose, sorbose, sorbitol, xylose, arabinose or 0.7 mM sophorose. The pH of the medium was adjusted to 4.8 by addition of KOH. The cultures were inoculated with 8.times.10.sup.7 spores/200 ml medium and grown for up to 7 days in conical flasks at 28.degree. C. with shaking at 250 rpm. The culture medium was sampled periodically and the samples were transferred into GC-MS vials, heated at 40.degree. C., and isoprene was measured off-line from the head space of the bottle using the GC-MS method described earlier for E. coli.

Alternatively, the aliquots of the culture transferred into fresh medium in tightly sealed bottles. The bottles were incubated at 28.degree. C. with 250 rpm shaking for up to 96 h. Samples were taken at regular intervals during the cultivation. At each time point a bottle was removed, the cultivation was heated at 40.degree. C. and isoprene was measured from the head space of the bottle using the GC-MS method described earlier for E. coli.

Example 12

Construction of Trichoderma reesei Strains Overexpressing an Isoprene Synthase for Isoprene Production II

Strains

Escherichia coli DH5.alpha. (Life Technologies) was used for propagation of the plasmids. Trichoderma reesei QM6a (VTT-D-071262T, ATCC13631), RutC-30 (VTT-D-086271, ATCC56765), and M122 (RutC-30 mus53.DELTA.) were obtained from VTT Culture Collection (Espoo, Finland). Spore suspensions were prepared by cultivating the fungus on potato-dextrose plates (BD, Sparks, Md., USA) for 5-7 days, after which the spores were harvested, suspended in a buffer containing 0.8% NaCl, 0.025% Tween-20 and 20% glycerol, filtered through cotton and stored at -80.degree. C.

Expression Vector

The vector for expression of I. batatas IspS in T. reesei was named pCIL-105 (FIG. 19 SEQ ID NO:12). The backbone for the expression vector contained 5' and 3' flank regions (<1000 bp) of the T. reesei pep4 (tre77579) gene in pRS426 (ATCC77107) vector background. The primer sequences indicating the start and end regions for both pep4 flanks are shown in Table 1. The selection marker (pyr4) in the vector backbone pCIL102 was removed by NotI digestion and replaced by hygromycin resistance cassette obtained from plasmid pCIL-107 by NotI digestion. The gene encoding I. batatas isoprene synthase with a C-terminal StrepII-tag was obtained from E. coli expression plasmid pCIL41 by NdeI-AvrII digestion. The Aspergillus nidulans gpdA promoter, A. nidulans trpC terminator and a bridge fragment (part of pep4 3'flank) were produced by PCR using primers in Table 1 and plasmid pCIL104 containing these elements as templates. PCR amplification was carried out with KAPA HiFi HotStart ReadyMix PCR kit (KAPA Biosystems). All fragments were separated with agarose gel electrophoresis and isolated with a gel extraction kit (Qiagen). The PCR fragments contained 30 bp or 40 bp overlapping sequences needed for cloning the expression construct using homologous recombination system in yeast. The vector backbone and the appropriate digestion and PCR fragments were transformed into S. cerevisiae (strain H3488/FY834) according to Gietz, R. D., and Woods, R. A. (2002, Guide to Yeast Genetics and Molecular and Cell Biology, Pt B 350, pp. 87-96). The plasmid DNA from the yeast transformants was rescued by transformation into E. coli and checked from a few clones by digestion. The clone taken further was verified by sequencing and named pCIL105 (SEQ ID NO: 12).

Strain Generation

For T. reesei transformation, the expression construct was released from pCIL105 with MssI and the correct fragment was purified from agarose gel using QIAquick Gel Extraction Kit (Qiagen). T. reesei strain RutC-30 or T. reesei strain M122 (RutC-30 .DELTA.mus53) was transformed with 5 .mu.g of expression cassette fragment according to Penttila et al. 1987 (Gene 61: 155-164). Transformants were selected on Trichoderma minimal medium containing 125 .mu.g/ml hygromycin B (Calbiochem). The transformants were streaked onto Trichoderma minimal medium agar with 0.1% (v/v) Triton X-100 and 150 .mu.g/ml Hygromycin B and cultivated at +28.degree. C. Transformants growing on selective plates were screened by PCR for correct 5' and 3'integration or for the presence of the IspS expression cassette (FIG. 20) somewhere else in the genome using the primers shown in Table 2. FIG. 20. shows PCR analysis for the presence of the IspS expression cassette in T. reesei transformed with pCIL105. Wild type strain QM6a, parent and DDIW are negative controls. For PCR, internal primers (SEQ ID NO: 31 and SEQ ID: NO 32) shown in Table 2 were used. The expected product size was approximately 1.1 kb.

TABLE-US-00001 TABLE 1 Primers used to generate fragments for cloning the expression vector pCIL105 for I. batatas IspS-C-StrepII. Primer Sequence Product 77579 5f TCAGGTCAACCACCGAGGAC (SEQ ID NO: 13) pep4 5'flank 77579_5r TGAATGGGATGGTTCGATTG (SEQ ID NO: 14) 77579_3f AGGTAGACGCTTTGCGAGTG (SEQ ID NO: 15) pep4 3'flank 77579_3r TGAACTGACGCGGACTGA (SEQ ID NO: 16) C017_gpdA_rec_for CCTCTGGCAGCAATCGAACCATCCCATTCATTAATTAA gdpA prom GCTCCTTATTGAAGTCGGAGG (SEQ ID NO: 17) C018_gpdA_rec_rev ATGAGGAGGGTTGATAGTTTGCTGAGCGGCGGGCAGT CATGATGTCTGCTCAAGCGGG (SEQ ID NO: 18) C019_trpC_rec_for TAATCCAGTGGAATCTGTCCCACCCACAATTTGAAAAG trpC term TAAGATCCACTTAACGTTACTGAAATCA (SEQ ID NO: 19) C020_trpC_rec_rev AAGGGGACCGGCCGCTAGTCTCACCGTTATGCGGCCG CTTAATTAAGAGTGGAGATGTGGAGTGGG (SEQ ID NO: 20) C021_pep4_3frec_for GATAACCCATCGGCAGCAGATGATAATGATTCCGCAG pep4 bridge CACGCGGCCGCAGGTAGACGCTT (SEQ ID NO: 21) C022_pep4_3f_rev GAGGTGCCAAAGCCGTTTCG (SEQ ID NO: 22)

TABLE-US-00002 TABLE 2 Primers used to screen for correct integration of the expression cassette or the presence of the IspS cassette in the T. reesei genome. Primer Sequence Product T302_77579_5int GATTCATCACAGGGGCAGTC (SEQ ID NO: 23) 5'integration T624_gpdA_seqR1 CTCCATATTCTCCGATGATGC (SEQ ID NO: 24) T302_77579_5int GATTCATCACAGGGGCAGTC (SEQ ID NO: 25) 5'integration C046_gpdA_rev TATCCTCTTGACACCGCTCC (SEQ ID NO: 26) T415_77579_3screen ACGCCGTTGCTGAGCCTTG (SEQ ID NO: 27) 3'integration T1411_cbh2t_end_f CCAATAGCCCGGTGATAGTC (SEQ ID NO: 28) T415_77579_3screen ACGCCGTTGCTGAGCCTTG (SEQ ID NO: 29) 3'integration T1404_cbh2term_for CCGTCTAGCGCTGTTGATTG (SEQ ID NO: 30) C009_Ibat_for1 GATCAACTTAGCACGCATTG (SEQ ID NO: 31) internal C029_PKIp_rev TTTGCTCCAACTCAGGCG (SEQ ID NO: 32)

Example 13

Construction of Aspergillus niger Strains Overexpressing an Isoprene Synthase for Isoprene Production

The codon optimized isoprene synthase polynucleotide of example 3 was cloned into an expression vector containing the A. nidulans gpdA promoter-isoprene synthase polynucleotide-A. nidulans trpC terminator-A. nidulans gpdA promoter hygromycin resistance marker (hph) and A. nidulans trpC terminator (FIG. 17). The resulting construct was transformed into A. niger. Transformation was performed using the PEG-mediated protoplast transformation. The transformants were selected based on hygromycin resistance. The presence of the transforming DNA was confirmed by PCR.

A. niger was grown in the production medium (The defined medium of Vogel described by Mojzita et al., 2010, with 20 g/L glucose or xylose as a carbon source). Pre-cultures were grown in the medium containing 10 g/L yeast extract, 20 g/L peptone and 30 g/L gelatine (50 ml medium in 250 ml flasks). Mycelium from 50 ml cultures was collected by filtration, washed with sterile H.sub.2O and re-suspended in 20 ml of the production medium in 250 ml flasks. Cultures were incubated at 30.degree. C., 250 rpm. The culture medium was sampled periodically and the samples were transferred into GC-MS vials, heated at 40.degree. C., and isoprene was measured off-line from the head space of the bottle using the GC-MS method described earlier for E. coli. Alternatively, for isoprene production, aliquots of the culture were transferred into fresh medium in tightly sealed GC-MS bottles. The bottles were incubated at 30.degree. C. with 250 rpm shaking for up to 96 h. Samples were taken at regular intervals during the cultivation. At each time point a bottle was removed, the cultivation was heated at 40.degree. C. and isoprene was measured from the head space of the bottle using the GC-MS method described earlier for E. coli.

Example 14

Ipomoea batatas IspS Expression in Plant Cell Cultures

The I. batatas isoprene synthase polynucleotide was cloned into an over expression vector functional in various plant species under the control of the CaMV35S promoter for expression in plant cells. The expression vector had the hygromycin or kanamycin resistance marker for the selection of transformants. Nicotiana tabacum bright yellow (BY-2) cell suspension cultures or hairy root cultures were maintained and transformed with the isoprene synthase expression construct essentially as described in (Hakkinen et al. 2007 Phytochemistry 68:2773-2785). Transformants were selected based on antibiotic resistance. The presence of the transforming DNA was confirmed by PCR. For isoprene accumulation analysis, hairy roots were incubated in 20 ml medium in 100 ml shake flasks and cultivated in a rotary shaker (70 rpm, 24.degree. C.) in modified Gamborg B5 medium without casein (Jouhikainen et al., Planta, 208:545-551, 1999) for up to 28 days. The culture medium was sampled periodically and the samples were transferred into GC-MS vials, heated at 40.degree. C., and isoprene was measured off-line from the head space of the bottle using the GC-MS method described earlier for E. coli.

Although specific embodiments of the present invention are described in detail, it will be apparent to those skilled in the art that the specific description is merely desirable exemplary embodiment and should not be construed as limiting the scope of the present invention. Therefore, the substantial scope of the present invention is defined by the accompanying claims and equivalent thereof.

Sequence Listing Free Text

Attach the electronic file.

SEQUENCE LISTINGS

1

961588PRTIpomoea batatas 1Pro Asn Phe Gly Cys Tyr Leu Ile His Asn Asn Leu Pro Asn Pro Lys 1 5 10 15 Asp Ala Lys Pro Leu Thr Leu Leu Leu Asn Arg Asn Ser Gly Val Ser 20 25 30 Cys Pro Arg Gln Leu Arg Cys Leu Ala Ser Ser Ala Gln Asn Gln Glu 35 40 45 Thr Ala Arg Arg Ser Ala Asn Tyr Gln Pro Ser Ser Trp Ser Tyr Asp 50 55 60 Glu Tyr Leu Val Asp Thr Thr Thr Asn Asp Ser Lys Leu Arg Ile Gln 65 70 75 80 Glu Asp Ala Arg Lys Lys Leu Glu Glu Glu Val Arg Asn Val Leu Glu 85 90 95 Asp Gly Lys Leu Glu Thr Leu Ala Leu Leu Glu Leu Ile Asp Asp Ile 100 105 110 Gln Arg Leu Gly Leu Gly Tyr Lys Phe Arg Glu Ser Thr Ser Thr Ser 115 120 125 Leu Ala Met Leu Lys Met Ser Val Gly Gln Glu Ala Ser Asn Ser Ser 130 135 140 Leu His Ser Cys Ser Leu Tyr Phe Arg Leu Leu Arg Glu His Gly Phe 145 150 155 160 Asp Ile Thr Pro Asp Val Phe Glu Lys Phe Lys Asp Glu Asn Gly Lys 165 170 175 Phe Lys Asp Ser Ile Ala Lys Asp Val Arg Gly Leu Leu Ser Leu Tyr 180 185 190 Glu Ala Ser Phe Leu Gly Phe Glu Gly Glu Asn Ile Leu Asp Glu Ala 195 200 205 Arg Glu Phe Thr Thr Met His Leu Asn Asn Ile Lys Asp Lys Val Asn 210 215 220 Pro Arg Ile Ala Glu Glu Val Asn His Ala Leu Glu Leu Pro Leu His 225 230 235 240 Arg Arg Val Glu Arg Leu Glu Ala Arg Arg Arg Ile Gln Ser Tyr Ser 245 250 255 Lys Ser Gly Glu Thr Asn Gln Ala Leu Leu Thr Leu Ala Lys Ile Asp 260 265 270 Phe Asn Thr Val Gln Ala Val Tyr Gln Arg Asp Leu Gln Asp Val Ser 275 280 285 Lys Trp Trp Lys Asp Thr Ala Leu Ala Asp Lys Leu Ser Phe Ala Arg 290 295 300 Asp Arg Leu Met Glu Ser Phe Phe Trp Ala Ile Gly Met Ser Tyr Asp 305 310 315 320 Pro Gln His Ser Lys Ser Arg Glu Ala Val Thr Lys Thr Phe Lys Leu 325 330 335 Val Thr Val Leu Asp Asp Val Tyr Asp Val Tyr Gly Ser Leu Asp Glu 340 345 350 Leu Glu Lys Phe Thr Ala Ala Ala Glu Arg Trp Asp Val Asp Ala Ile 355 360 365 Lys Asp Leu Pro Asp Tyr Met Lys Leu Cys Tyr Leu Ser Leu Phe Asn 370 375 380 Thr Val Asn Asp Leu Ala Tyr Asp Thr Leu Lys Asp Lys Gly Glu Thr 385 390 395 400 Val Ile Pro Ile Met Lys Lys Ala Trp Ala Asp Leu Leu Lys Ala Phe 405 410 415 Leu Gln Glu Ala Gln Trp Ile Tyr Asn Lys Tyr Thr Pro Thr Phe Asp 420 425 430 Glu Tyr Leu Asn Asn Ala Arg Phe Ser Val Ser Gly Cys Val Met Leu 435 440 445 Val His Ser Tyr Phe Thr Thr Gln Asn Ile Thr Lys Glu Ala Ile His 450 455 460 Ser Leu Glu Asn Tyr His Asp Leu Leu Ile Trp Pro Ser Ile Val Phe 465 470 475 480 Arg Leu Ala Asn Asp Leu Ser Ser Ser Lys Ala Glu Ile Glu Arg Gly 485 490 495 Glu Thr Ala Asn Ser Ile Thr Cys Tyr Met Asn Glu Thr Gly Gln Ser 500 505 510 Glu Glu Gln Ala Arg Glu His Ile Ser Lys Leu Ile Asp Glu Cys Phe 515 520 525 Lys Lys Met Asn Lys Glu Met Leu Ala Thr Ser Thr Ser Pro Phe Glu 530 535 540 Lys Ser Phe Ile Glu Thr Ala Ile Asn Leu Ala Arg Ile Ala Leu Cys 545 550 555 560 Gln Tyr Gln Tyr Gly Asp Ala His Ser Asp Pro Asp Val Arg Ala Arg 565 570 575 Asn Arg Ile Val Ser Val Ile Ile Asn Pro Val Glu 580 585 21767DNAIpomoea batatas 2ccaaacttcg gttgctactt aattcacaac aatctcccta accctaaaga tgctaagcca 60ctaacattac tccttaaccg taacagtggt gttagctgcc cacgacaact tcgatgtctt 120gctagcagtg cacagaatca agaaactgcc agacgttccg ccaattacca acctagttct 180tggagttacg atgaatattt ggtggacact acaaccaatg actcaaagtt gagaatacaa 240gaggatgcta gaaagaagtt ggaggaagaa gtgagaaacg tccttgagga tgggaaattg 300gaaacgttag ccttgcttga gctaattgac gatattcaac gtttagggtt gggttacaaa 360ttcagagaaa gtactagtac atcccttgct atgctaaaga tgtctgttgg acaagaagcc 420tcaaactcta gcctccattc ttgttctctc tattttagat tattaagaga gcatggcttt 480gacattactc cagatgtttt tgaaaaattc aaggatgaaa atgggaaatt caaggacagc 540atagctaaag acgttcgtgg gttgttgagt ttgtacgagg cttcctttct gggatttgaa 600ggggagaaca tcttagacga ggcaagagaa ttcacaacta tgcatctaaa caacattaag 660gataaggtta atccaagaat tgcagaagaa gtgaaccacg cattggagct tccacttcac 720cgaagagtgg agaggctaga ggccaggcgt agaatccaat cctactccaa atcgggagag 780acaaatcaag cgttattaac actagcaaag atcgatttca acactgttca agccgtgtat 840caaagagatc tacaagatgt ttcaaagtgg tggaaagata ccgcgttagc agataagttg 900agctttgcta gggacaggct aatggagagc ttcttttggg caattggaat gtcttatgat 960cctcaacata gtaaaagtcg agaagcggtg acaaaaacat tcaagcttgt cacggtcctt 1020gatgatgttt acgatgtgta tggctctctc gatgaacttg agaaattcac tgctgctgct 1080gaaagatggg atgttgatgc aataaaagac cttccagact acatgaagtt gtgctatctt 1140tctcttttca acactgtcaa cgacttagca tatgatacct taaaggacaa aggagaaact 1200gtcattccta tcatgaagaa agcgtgggca gatttattga aagcattctt gcaagaagca 1260caatggatct acaacaaata cactcctacc tttgatgaat acctcaacaa tgcacgtttt 1320tctgtgtctg gttgtgtcat gttagttcac tcctacttca ccactcagaa catcacaaag 1380gaagcaattc attccttgga gaactaccat gatcttttaa tctggccgtc catagttttc 1440cgccttgcta acgatttgag ctcttctaag gcggagatag agagaggaga aacagcaaac 1500tcgattacat gctatatgaa tgagactgga cagtcggagg agcaagctcg ggaacacatt 1560agtaaactaa ttgacgagtg ctttaagaag atgaacaaag agatgctagc tacttcaact 1620tcaccatttg agaaatcctt catagagact gcaataaatc ttgctcgaat tgctctgtgc 1680caatatcagt atggtgacgc tcacagtgac cctgatgtta gagcaagaaa tcggatcgtg 1740tcagttatca taaatccggt tgaataa 176731626DNAArtificialoptimized sequence of IspS 3atgactgccc gccgctcagc aaactatcaa ccctcctcat ggtcttacga cgaatacttg 60gtggacacta ctactaacga cagcaaactg cgcattcaag aagacgctcg taaaaaattg 120gaagaagaag tgcgtaacgt tctggaagat ggcaaattgg aaaccttagc actgttggaa 180ctgattgatg acatccaacg gctgggcttg ggttataaat ttcgcgaaag caccagtact 240tccctggcta tgttgaaaat gagtgtgggg caggaagcat ccaacagcag tttgcattct 300tgttcattgt actttcgttt actgcgggaa cacggcttcg atattacccc cgacgtgttc 360gaaaaattca aagatgaaaa cggtaaattt aaagatagca tcgctaaaga tgttcgcggg 420ttgttatcat tgtatgaagc aagcttttta gggttcgaag gcgaaaacat tttggacgaa 480gcccgcgaat tcaccactat gcatctgaat aacatcaaag ataaagtgaa tccccgtatc 540gcggaagaag ttaaccatgc tttagaactg ccgttgcacc gccgtgtgga acgtctggaa 600gctcggcgcc gtattcaaag ctatagtaaa tccggtgaaa ccaatcaggc cctgctgacc 660ctggctaaaa tcgattttaa caccgtgcag gcggtttacc aacgggatct gcaggacgtt 720agtaaatggt ggaaagacac tgcattggcc gataaattat ccttcgcccg ggatcgcctg 780atggaaagct ttttctgggc gattggtatg agctatgatc cccaacactc taaatcacgg 840gaagccgtga ccaaaacttt taaactggtg accgttttgg atgacgtgta tgacgtttac 900gggtctttag atgaactgga aaaattcacc gccgccgccg aacgttggga tgttgacgcg 960attaaagatc tgccggacta catgaaattg tgttacttat ccctgtttaa taccgtgaac 1020gatctggctt atgacacctt gaaagataaa ggcgaaactg ttattcctat catgaagaaa 1080gcctgggctg atttactgaa agcatttctg caggaagccc aatggatcta caacaaatac 1140accccaactt tcgatgaata cctgaataac gcccgtttca gcgtgagtgg ttgcgtgatg 1200ttggttcata gctactttac cactcagaac atcaccaaag aagcgatcca ttctctggaa 1260aactaccacg acttgttaat ttggcctagc atcgttttcc gtttagcaaa tgatctgtcc 1320tcttcaaaag ccgaaattga acggggcgaa accgcgaata gcatcacttg ttatatgaac 1380gaaaccggtc aaagtgaaga acaggcccgt gaacacattt ccaaactgat cgatgaatgc 1440ttcaagaaaa tgaacaaaga aatgctggcc acctccactt ctccgtttga aaaatccttc 1500attgaaaccg cgatcaactt agcacgcatt gccctgtgcc agtatcaata cggcgatgcc 1560catagcgatc cagatgttcg ggcacgcaac cgcattgtgt cagttatcat taatccagtg 1620gaatag 1626462DNAArtificialprimer 4tagcaatcta atctaagttt taattacaaa ctcgagtaaa atggaccaat tggtgaaaac 60tg 62553DNAArtificialprimer 5ccaaacctct ggcgaagaag tccaaagctg tcgacggatt taatgcaggt gac 5369167DNAArtificialexpression vector for an N-terminally truncated S. cerevisiae HMG1 named pPK-HMGmisc_feature(1189)..(1189)n is a, c, g, or tmisc_feature(6696)..(6696)n is a, c, g, or t 6ggccgcaata gagagtgacc tatccaagct ttgggggtct aagttttaat ggcccaggga 60atcattactt ttttttctca atccttgatg gataaaagta ttacatacgt acaggattgt 120gtattagtgt atttcgttat atgattaaac aaagtttata gattgtaaag tagacgtaaa 180gtttagtaat tcattttaat gttcatttta cattcagatg tcattaagcg gctttagagt 240tgatttcatc agataattta gcttgagcaa ccaagatttc tggagcatcg aattcatcca 300agaataattc aatgactcta atcttatctt ccttgttgaa tgcttcatcc ttcatcaaag 360cgtccaagtc cttagcggat ttaacaacat ggttttcata ttgggtcttg tcagcaaaga 420gcttcaataa caattggtga tcccatggtt gaatttggtt gtagtcctca tgacgaccgt 480ggatcaactt ttcgatagtg taacctctgt tgtttaagat gaagatgtat ggcttgatgt 540tccatcttgc agcatctgag attgattgga cagtcaattg taaagaacca tcaccaataa 600acaaaacagt tcttctttct tgttcgccag tttgtttgtg tgcatcttca gcagcaaatg 660cagcaccaac tgcagctggt aaggagaaac caatggaacc ccataagact tgggagatag 720actttgaatc tcttggtatg ggtagccaag actagtcgat atcacctaat aacttcgtat 780agcatacatt atacgaagtt atattaaggg ttctcgagaa ttcttgctgc aacggcaaca 840tcaatgtcca cgtttacaca cctacattta tatctatatt tatatttata tttatttatt 900tatgctactt agcttctata gttagttaat gcactcacga tattcaaaat tgacaccctt 960caactactcc ctactattgt ctactactgt ctactactcc tctttactat agctgctccc 1020aataggctcc accaataggc tctgtcaata cattttgcgc cgccaccttt caggttgtgt 1080cactcctgaa ggaccatatt gggtaatcgt gcaatttctg gaagagagtg ccgcgagaag 1140tgaggccccc actgtaaatc ctcgaggggg catggagtat ggggcatgna ggatggagga 1200tggggggggg gggggaaaat aggtagcgaa aggacccgct atcaccccac ccggagaact 1260cgttgccggg aagtcatatt tcgacactcc ggggagtcta taaaaggcgg gttttgtctt 1320ttgccagttg atgttgctga gaggacttgt ttgccgtttc ttccgattta acagtataga 1380atcaaccact gttaattata cacgttatac taacacaaca aaaacaaaaa caacgacaac 1440aacaacaaca atgtttgctt tctactttct caccgcatgc accactttga agggtgtttt 1500cggagtttct ccgagttaca atggtcttgg tctcacccca cagatgggtt gggacagctg 1560gaatacgttt gcctgcgatg tcagtgaaca gctacttcta gacactgctg atagaatttc 1620tgacttgggg ctaaaggata tgggttacaa gtatgtcatc ctagatgact gttggtctag 1680cggcagggat tccgacggtt tcctcgttgc agacaagcac aaatttccca acggtatggg 1740ccatgttgca gaccacctgc ataataacag ctttcttttc ggtatgtatt cgtctgctgg 1800tgagtacacc tgtgctgggt accctgggtc tctggggcgt gaggaagaag atgctcaatt 1860ctttgcaaat aaccgcgttg actacttgaa gtatgataat tgttacaata aaggtcaatt 1920tggtacacca gacgtttctt accaccgtta caaggccatg tcagatgctt tgaataaaac 1980tggtaggcct attttctatt ctctatgtaa ctggggtcag gatttgacat tttactgggg 2040ctctggtatc gccaattctt ggagaatgag cggagatatt actgctgagt tcacccgtcc 2100agatagcaga tgtccctgtg acggtgacga atatgattgc aagtacgccg gtttccattg 2160ttctattatg aatattctta acaaggcagc tccaatgggg caaaatgcag gtgttggtgg 2220ttggaacgat ctggacaatc tagaggtcgg agtcggtaat ttgactgacg atgaggaaaa 2280ggcccatttc tctatgtggg caatggtaaa gtccccactt atcattggtg ccgacgtgaa 2340tcacttaaag gcatcttcgt actcgatcta cagtcaagcc tctgtcatcg caattaatca 2400agatccaaag ggtattccag ccacaagagt ctggagatat tatgtttcag acaccgatga 2460atatggacaa ggtgaaattc aaatgtggag tggtccgctt gacaatggtg accaagtggt 2520tgctttattg aatggaggaa gcgtagcaag accaatgaac acgaccttgg aagagatttt 2580ctttgacagc aatttgggtt caaaggaact gacatcgact tgggatattt acgacttatg 2640ggccaacaga gttgacaact ctacggcgtc tgctatcctt gaacagaata aggcagccac 2700cggtattctc tacaatgcta cagagcagtc ttataaagac ggtttgtcta agaatgatac 2760aagactgttt ggccagaaaa ttggtagtct ttctccaaat gctatactta acacaactgt 2820tccagctcat ggtatcgcct tctataggtt gagaccctcg gcttaagctc aatgttgagc 2880aaagcaggac gagaaaaaaa aaaataatga ttgttaagaa gttcatgaaa aaaaaaagga 2940aaaatactca aatacttata acagagtgat taaataataa acggcagtat accctatcag 3000gtattgagat agttttattt ttgtaggtat ataatctgaa gcctttgaac tattttctcg 3060tatatatcat ggagtataca ttgcattagc aacattacat actaggatct ctagacctaa 3120taacttcgta tagcatacat tatacgaagt tatattaagg gttgtcgacg gatccttgct 3180gcaacggcaa catcaatgtc cacgtttaca cacctacatt tatatctata tttatattta 3240tatttattta tttatgctac ttagcttcta tagttagtta atgcactcac gatattcaaa 3300attgacaccc ttcaactact ccctactatt gtctactact gtctactact cctctttact 3360atagctgctc ccaataggct ccaccaatag gctctgccaa tacattttgc gccgccacct 3420ttcaggttgt gtcactcctg aaggaccata ttgggtaatc gtgcaatttc tggaagagag 3480tccgcgagaa gtgaggcccc cactgtaaat cctcgagggg gcatggagta tggggcatgg 3540aggatggagg atgggggggg gcgaaaaata ggtagcgaaa ggacccgcta tcaccccacc 3600cggagaactc gttgccggga agtcatattt cgacactccg gggagtctat aaaaggcggg 3660ttttgtcttt tgccagttga tgttgctgag aggacttgtt tgccgtttct tccgatttaa 3720cagtatagaa tcaaccactg ttaattatac acgttatact aacacaacaa aaacaaaaac 3780aacgacaaca acaacaacaa gatccatgga ccaattggtg aaaactgaag tcaccaagaa 3840gtcttttact gctcctgtac aaaaggcttc tacaccagtt ttaaccaata aaacagtcat 3900ttctggatcg aaagtcaaaa gtttatcatc tgcgcaatcg agctcatcag gaccttcatc 3960atctagtgag gaagatgatt cccgcgatat tgaaagcttg gataagaaaa tacgtccttt 4020agaagaatta gaagcattat taagtagtgg aaatacaaaa caattgaaga acaaagaggt 4080cgctgccttg gttattcacg gtaagttacc tttgtacgct ttggagaaaa aattaggtga 4140tactacgaga gcggttgcgg tacgtaggaa ggctctttca attttggcag aagctcctgt 4200attagcatct gatcgtttac catataaaaa ttatgactac gaccgcgtat ttggcgcttg 4260ttgtgaaaat gttataggtt acatgccttt gcccgttggt gttataggcc ccttggttat 4320cgatggtaca tcttatcata taccaatggc aactacagag ggttgtttgg tagcttctgc 4380catgcgtggc tgtaaggcaa tcaatgctgg cggtggtgca acaactgttt taactaagga 4440tggtatgaca agaggcccag tagtccgttt cccaactttg aaaagatctg gtgcctgtaa 4500gatatggtta gactcagaag agggacaaaa cgcaattaaa aaagctttta actctacatc 4560aagatttgca cgtctgcaac atattcaaac ttgtctagca ggagatttac tcttcatgag 4620atttagaaca actactggtg acgcaatggg tatgaatatg atttctaaag gtgtcgaata 4680ctcattaaag caaatggtag aagagtatgg ctgggaagat atggaggttg tctccgtttc 4740tggtaactac tgtaccgaca aaaaaccagc tgccatcaac tggatcgaag gtcgtggtaa 4800gagtgtcgtc gcagaagcta ctattcctgg tgatgttgtc agaaaagtgt taaaaagtga 4860tgtttccgca ttggttgagt tgaacattgc taagaatttg gttggatctg caatggctgg 4920gtctgttggt ggatttaacg cacatgcagc taatttagtg acagctgttt tcttggcatt 4980aggacaagat cctgcacaaa atgttgaaag ttccaactgt ataacattga tgaaagaagt 5040ggacggtgat ttgagaattt ccgtatccat gccatccatc gaagtaggta ccatcggtgg 5100tggtactgtt ctagaaccac aaggtgccat gttggactta ttaggtgtaa gaggcccgca 5160tgctaccgct cctggtacca acgcacgtca attagcaaga atagttgcct gtgccgtctt 5220ggcaggtgaa ttatccttat gtgctgccct agcagccggc catttggttc aaagtcatat 5280gacccacaac aggaaacctg ctgaaccaac aaaacctaac aatttggacg ccactgatat 5340aaatcgtttg aaagatgggt ccgtcacctg cattaaatcc taaacttagt catacgtcat 5400tggtattctc ttgaaaaaga agcacaacag caccatgtgg gatcttccaa gctttggact 5460tcttcgccag aggtttggtc aagtctccaa tcaaggttgt cggcttgtct accttgccag 5520aaatttacga aaagatggaa aagggtcaaa tcgttggtag atacgttgtt gacacttcta 5580aataagcgaa tttcttatga tttatgattt ttattattaa ataagttata aaaaaaataa 5640gtgtatacaa attttaaagt gactcttagg ttttaaaacg aaaattctta ttcttgagta 5700actctttcct gtaggtcagg ttgctttctc aggtatagca tgaggtcgct cttattgacc 5760acacctctac cggcatgccg agcaaatgcc tgcaaatcgc tccccatttc acccaattgt 5820agatatgcta actccagcaa tgagttgatg aatctcggtg tgtattttat gtcctcagag 5880gacaacacct gttgtaatcg ttcttccaca cggatccgta tcatttgtag cccacgccac 5940ccggaaaaac caccattgtc ctcagcagtc cgccaaaata tggatgcgct caatcaactt 6000tccctccccc gtcaatgcca aaaggataac gacacactat taagagcgca tcatttgtaa 6060aagccgagga agggggatac gctaaccgga gacgtctcgc ctcactctcg gagctgagcc 6120gccctcctta agaaattcat gggaagaaca cccttcgcgg cttctgaacg gctcgccctc 6180gtccattggt cacctcacag tggcaactaa taaggacatt atagcaatag aaattaaaat 6240ggtgcacaga aatacaatag gatcgaatag gataggatac aataagatac ggaatattag 6300actatactgt gatacggtac ggtacgatac gctacgatac gatacgatag aggataccac 6360ggatataacg tagtattatt tttcattatt gggggttttt ttctgtttga attttccacg 6420tcaagagtat cccatctgac aggaaccgat ggactcgtca cagtacctat cgcccgagtt 6480caatccatgg acgcttcggg tgaaggatct tcgtccgctg ttggcaagcc atgggatcag 6540ggcgtcgcca agggacagaa aggcggatct tgtacgtctc ttcaacacag agctgcgtcc 6600gaaacttact gagagtctta acaccaataa tcccaaaaac aacaacaaca atacagatac 6660tatagacact atagacacta tagacactac taacanccct ttaaagcgcc gccgattaag 6720caatgttgat gagccgtcaa ttccatatac tctgcagcgt acgaagcttc agctggcggc 6780cgcgttctat agtgtcacct aaatcgtatg tgtatgatac ataaggttat gtattaattg 6840tagccgcgtt ctaacgacaa tatgtccata tggtgcactc tcagtacaat ctgctctgat 6900gccgcatagt taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct 6960tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt 7020cagaggtttt caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta 7080tttttatagg ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg 7140ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 7200ctcatgagac aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt 7260attcaacatt tccgtgtcgc

ccttattccc ttttttgcgg cattttgcct tcctgttttt 7320gctcacccag aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg 7380ggttacatcg aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa 7440cgttttccaa tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt 7500gacgccgggc aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag 7560tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt 7620gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga 7680ccgaaggagc taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt 7740tgggaaccgg agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta 7800gcaatggcaa caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg 7860caacaattaa tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc 7920cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt 7980atcattgcag cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg 8040gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg 8100attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa 8160cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa 8220atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga 8280tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg 8340ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact 8400ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac 8460cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg 8520gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg 8580gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga 8640acgacctaca ccgaactgag atacctacag cgtgagcatt gagaaagcgc cacgcttccc 8700gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg 8760agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc 8820tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc 8880agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt 8940cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 9000gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc 9060ccaatacgca aaccgcctct ccccgcgcgt tggccgattc attaatgcag gttaacctgg 9120cttatcgaaa ttaatacgac tcactatagg gagaccggca gatccgc 9167736DNAArtificialprimer 7agcgcggatc catggaccaa ttggtgaaaa ctgaag 36832DNAArtificialprimer 8agcgcggatc ccacatggtg ctgttgtgct tc 3299935DNAArtificialvector for expression of I. batatas IspS and S. cerevisiae IDI1 was named pPK-IspS-IDImisc_feature(957)..(957)n is a, c, g, or t 9ggccgcatag gccactagtt caaagggaat gtgataatgc aaggttaggt ttaacaagaa 60tgggttggcg gactcgtcaa tggagagtac aatgccaaag ttctccttga ggttatttaa 120tcttccacag gttcaaggca ttctggcagc ttctcaattg ggaagttttc gtagatgata 180cggtaggtgg tggtaaatag tgggaactca tctgtcctgc ccatgttgga gaggaactcg 240taaacttccc tagttgtgtg gataccttga caggattggc cattcaacaa cttttcttca 300gcctccgttg cagagacaga atgttgtgcc atatatctac caactctaac gttacggccg 360ccggcacagg tagtgattag gtcggcaaca cctgcagatt catgagtaaa ggttgcagca 420tgacagccat cgaaaaaagt cttggcaaat tgaatggttt ccaccaaacc tattctcatg 480actgcagcct ttgcattatc accccaacct aaaccttcga caaatgatat cacctaataa 540cttcgtatag catacattat acgaagttat attaagggtt ctcgagaatt cttgctgcaa 600cggcaacatc aatgtccacg tttacacacc tacatttata tctatattta tatttatatt 660tatttattta tgctacttag cttctatagt tagttaatgc actcacgata ttcaaaattg 720acacccttca actactccct actattgtct actactgtct actactcctc tttactatag 780ctgctcccaa taggctccac caataggctc tgtcaataca ttttgcgccg ccacctttca 840ggttgtgtca ctcctgaagg accatattgg gtaatcgtgc aatttctgga agagagtgcc 900gcgagaagtg aggcccccac tgtaaatcct cgagggggca tggagtatgg ggcatgnagg 960atggaggatg gggggggggg gggaaaatag gtagcgaaag gacccgctat caccccaccc 1020ggagaactcg ttgccgggaa gtcatatttc gacactccgg ggagtctata aaaggcgggt 1080tttgtctttt gccagttgat gttgctgaga ggacttgttt gccgtttctt ccgatttaac 1140agtatagaat caaccactgt taattataca cgttatacta acacaacaaa aacaaaaaca 1200acgacaacaa caacaacaat gcctgaactc accgcgacgt ctgtcgagaa gtttctgatc 1260gaaaagttcg acagcgtctc cgacctgatg cagctctcgg agggcgaaga atctcgtgct 1320ttcagcttcg atgtaggagg gcgtggatat gtcctgcggg taaatagctg cgccgatggt 1380ttctacaaag atcgttatgt ttatcggcac tttgcatcgg ccgcgctccc gattccggaa 1440gtgcttgaca ttggggaatt cagcgagagc ctgacctatt gcatctcccg ccgtgcacag 1500ggtgtcacgt tgcaagacct gcctgaaacc gaactgcccg ctgttctgca gccggtcgcg 1560gaggccatgg atgcgatcgc tgcggccgat cttagccaga cgagcgggtt cggcccattc 1620ggaccgcaag gaatcggtca atacactaca tggcgtgatt tcatatgcgc gattgctgat 1680ccccatgtgt atcactggca aactgtgatg gacgacaccg tcagtgcgtc cgtcgcgcag 1740gctctcgatg agctgatgct ttgggccgag gactgccccg aagtccggca cctcgtgcac 1800gcggatttcg gctccaacaa tgtcctgacg gacaatggcc gcataacagc ggtcattgac 1860tggagcgagg cgatgttcgg ggattcccaa tacgaggtcg ccaacatctt cttctggagg 1920ccgtggttgg cttgtatgga gcagcagacg cgctacttcg agcggaggca tccggagctt 1980gcaggatcgc cgcggctccg ggcgtatatg ctccgcattg gtcttgacca actctatcag 2040agcttggttg acggcaattt cgatgatgca gcttgggcgc agggtcgatg cgacgcaatc 2100gtccgatccg gagccgggac tgtcgggcgt acacaaatcg cccgcagaag cgcggccgtc 2160tggaccgatg gctgtgtaga agtactcgcc gatagtggaa accgacgccc cagcactcgt 2220ccgagggcaa aggaatagag tagtaagctc aatgttgagc aaagcaggac gagaaaaaaa 2280aaaataatga ttgttaagaa gttcatgaaa aaaaaaagga aaaatactca aatacttata 2340acagagtgat taaataataa acggcagtat accctatcag gtattgagat agttttattt 2400ttgtaggtat ataatctgaa gcctttgaac tattttctcg tatatatcat ggagtataca 2460ttgcattagc aacattacat actaggatct ctagacctaa taacttcgta tagcatacat 2520tatacgaagt tatattaagg gttgtcgacg gatccttgct gcaacggcaa catcaatgtc 2580cacgtttaca cacctacatt tatatctata tttatattta tatttattta tttatgctac 2640ttagcttcta tagttagtta atgcactcac gatattcaaa attgacaccc ttcaactact 2700ccctactatt gtctactact gtctactact cctctttact atagctgctc ccaataggct 2760ccaccaatag gctctgccaa tacattttgc gccgccacct ttcaggttgt gtcactcctg 2820aaggaccata ttgggtaatc gtgcaatttc tggaagagag tccgcgagaa gtgaggcccc 2880cactgtaaat cctcgagggg gcatggagta tggggcatgg aggatggagg atgggggggg 2940gcgaaaaata ggtagcgaaa ggacccgcta tcaccccacc cggagaactc gttgccggga 3000agtcatattt cgacactccg gggagtctat aaaaggcggg ttttgtcttt tgccagttga 3060tgttgctgag aggacttgtt tgccgtttct tccgatttaa cagtatagaa tcaaccactg 3120ttaattatac acgttatact aacacaacaa aaacaaaaac aacgacaaca acaacaacaa 3180gatccaaaat gacagccaga agatcagcaa actatcaacc ttcatcatgg tcctacgacg 3240aatacttggt cgatacaaca acaaacgatt ctaaattaag aatacaagaa gacgcaagaa 3300agaaattgga agaagaagta agaaacgttt tggaagatgg taaattagaa actttggcct 3360tgttggaatt gatcgatgac attcaaagat tgggtttagg ttacaagttt agagaatcaa 3420catccaccag tttagccatg ttgaagatgt cagttggtca agaagcatct aattcttctt 3480tgcattcttg ttcattgtac tttagattgt tgagagaaca cggtttcgat ataacaccag 3540acgtattcga aaaattcaag gatgaaaacg gtaaattcaa agattctatc gctaaggatg 3600ttagaggttt gttaagttta tatgaagcat catttttggg tttcgaaggt gaaaacatat 3660tggatgaagc tagagagttt actacaatgc acttgaataa catcaaggat aaggtcaacc 3720caagaatagc agaagaagta aaccatgcct tggaattacc tttgcacaga agagttgaaa 3780gattagaagc tagaagaaga atacaatcct acagtaagtc tggtgaaacc aatcaagcat 3840tgttgacttt ggcaaagatc gatttcaaca ctgtccaagc agtataccaa agagatttgc 3900aagacgtttc aaaatggtgg aaggacacag ctttagcaga taaattgtcc ttcgcaagag 3960atagattgat ggaatctttc ttttgggcca tcggcatgtc ttacgatcca caacactcaa 4020agtccagaga agctgtcact aagactttta aattggttac cgtcttggat gacgtttatg 4080acgtctacgg ttctttagat gaattggaaa aattcactgc tgcagccgaa agatgggatg 4140tagacgctat aaaagatttg cctgactaca tgaagttgtg ttacttatca ttgtttaata 4200ctgttaacga tttggcatat gacacattga aagataaggg tgaaaccgtc attccaataa 4260tgaaaaaggc ttgggctgat ttgttaaaag ccttcttaca agaagctcaa tggatctata 4320ataagtacac ccctactttc gatgaatact taaataacgc tagattcagt gtttctggtt 4380gcgtaatgtt ggttcattct tactttacca ctcaaaacat cacaaaggaa gcaatccata 4440gtttggaaaa ctaccacgac ttgttaatat ggccttctat cgtcttcaga ttagctaatg 4500atttgtccag ttctaaggca gaaatcgaaa gaggtgaaac tgccaattct atcacatgtt 4560acatgaacga aacaggtcaa tcagaagaac aagctagaga acatatctcc aaattgatcg 4620atgaatgctt caaaaagatg aataaggaaa tgttggccac atcaacctcc ccatttgaaa 4680aatcattcat cgaaaccgct attaacttag caagaattgc cttgtgccaa tatcaatacg 4740gtgacgctca ctctgatcct gacgttagag caagaaatag aatcgtaagt gtcatcatta 4800atccagtcga atggtcacat ccacaatttg aaaagtaata gggatcttcc aagctttgga 4860cttcttcgcc agaggtttgg tcaagtctcc aatcaaggtt gtcggcttgt ctaccttgcc 4920agaaatttac gaaaagatgg aaaagggtca aatcgttggt agatacgttg ttgacacttc 4980taaataagcg aatttcttat gatttatgat ttttattatt aaataagtta taaaaaaaat 5040aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag 5100taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga 5160ccacacctct accggcatgc gatatggata tggatatgga tatggagatg aatttgaatt 5220tagatttggg tcttgatttg gggttggaat taaaagggga taacaatgag ggttttcctg 5280ttgatttaaa caatggacgt gggaggtgat tgatttaacc tgatccaaaa ggggtatgtc 5340tattttttag agagtgtttt tgtgtcaaat tatggtagaa tgtgtaaagt agtataaact 5400ttcctctcaa atgacgaggt ttaaaacacc ccccgggtga gccgagccga gaatggggca 5460attgttcaat gtgaaataga agtatcgagt gagaaacttg ggtgttggcc agccaagggg 5520gggggggaag gaaaatggcg cgaatgctca ggtgagattg ttttggaatt gggtgaagcg 5580aggaaatgag cgacccggag gttgtgactt tagtggcgga ggaggacgga ggaaaagcca 5640agagggaagt gtatataagg ggagcaattt gccaccagga tagaattgga tgagttataa 5700ttctactgta tttattgtat aatttatttc tccttttgta tcaaacacat tacaaaacac 5760acaaaacaca caaacaaaca caattacaaa aattaattaa aaaatgactg ccgacaacaa 5820tagtatgccc catggtgcag tatctagtta cgccaaatta gtgcaaaacc aaacacctga 5880agacattttg gaagagtttc ctgaaattat tccattacaa caaagaccta atacccgatc 5940tagtgagacg tcaaatgacg aaagcggaga aacatgtttt tctggtcatg atgaggagca 6000aattaagtta atgaatgaaa attgtattgt tttggattgg gacgataatg ctattggtgc 6060cggtaccaag aaagtttgtc atttaatgga aaatattgaa aagggtttac tacatcgtgc 6120attctccgtc tttattttca atgaacaagg tgaattactt ttacaacaaa gagccactga 6180aaaaataact ttccctgatc tttggactaa cacatgctgc tctcatccac tatgtattga 6240tgacgaatta ggtttgaagg gtaagctaga cgataagatt aagggcgcta ttactgcggc 6300ggtgagaaaa ctagatcatg aattaggtat tccagaagat gaaactaaga caaggggtaa 6360gtttcacttt ttaaacagaa tccattacat ggcaccaagc aatgaaccat ggggtgaaca 6420tgaaattgat tacatcctat tttataagat caacgctaaa gaaaacttga ctgtcaaccc 6480aaacgtcaat gaagttagag acttcaaatg ggtttcacca aatgatttga aaactatgtt 6540tgctgaccca agttacaagt ttacgccttg gtttaagatt atttgcgaga attacttatt 6600caactggtgg gagcaattag atgacctttc tgaagtggaa aatgacaggc aaattcatag 6660aatgctataa ttaattaacc catgtctcta ctggtggtgg tgcttctttg gaattattgg 6720aaggtaagga attgccaggt gttgctttct tatccgaaaa gaaataaatt gaattgaatt 6780gaaatcgata gatcaatttt tttcttttct ctttccccat cctttacgct aaaataatag 6840tttattttat tttttgaata ttttttattt atatacgtat atatagacta ttatttatct 6900tttaatgatt attaagattt ttattaaaaa aaaattcgct cctcttttaa tgcctttatg 6960cagttttttt ttcccattcg atatttctat gttcgggttc agcgtatttt aagtttaata 7020actcgaaaat tctgcgttcg ttaacctgca gggatccatt cttggtaaaa attggtgagg 7080aatattaaag acaatcaagt ctgagcctgc acaagcctca acaatgtctg gaactgcaac 7140aacgttaact ggcaacttga tacctggcaa gtacttgacg ttttcgtgtt tggtatttat 7200gatttcagtc aacttttcgc cttcaatcaa ttcttcatag acccacatat taacatctct 7260ttgaaattga cgaggtctct caacggtgtt ttccgctata accttggcaa ttgtacaccc 7320ccagttaccg gaaccaacaa ccgtcacctt gaacggatgt tccggatagt cttctggttg 7380taatgatgta gaatcttttc tgtttggctt gattgtggac gcaatagtag ataatctttc 7440agcaggggac accattttaa tgtttgatct attcaatgtc ttgatagtat ttgagaaact 7500ccttgtaaag tgtaaactct ttgagattag aaacatacag ctggcggccg cgttctatag 7560tgtcacctaa atcgtatgtg tatgatacat aaggttatgt attaattgta gccgcgttct 7620aacgacaata tgtccatatg gtgcactctc agtacaatct gctctgatgc cgcatagtta 7680agccagcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg tctgctcccg 7740gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggttttca 7800ccgtcatcac cgaaacgcgc gagacgaaag ggcctcgtga tacgcctatt tttataggtt 7860aatgtcatga taataatggt ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc 7920ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 7980taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 8040cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 8100acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 8160ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 8220atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 8280gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 8340acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 8400atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 8460accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 8520ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 8580acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 8640gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 8700tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 8760ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 8820actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 8880taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 8940tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 9000gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 9060cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 9120gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 9180gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 9240tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 9300ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 9360cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 9420gaactgagat acctacagcg tgagcattga gaaagcgcca cgcttcccga agggagaaag 9480gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 9540gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 9600cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 9660tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 9720cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 9780cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 9840ccgcctctcc ccgcgcgttg gccgattcat taatgcaggt taacctggct tatcgaaatt 9900aatacgactc actataggga gaccggcaga tccgc 99351070DNAArtificialPrimer 10ctttttacaa caaatataaa accaaaagcg gccgcttaat taaaaaatga ctgccgacaa 60caatagtatg 701161DNAArtificialPrimer 11agagacatgg gagatcccgc gggcggccgc ttaattaatt atagcattct atgaatttgc 60c 611214515DNAArtificialvector for expression of I. batatas IspS in T. reesei named pCIL-105 12gtttaaactc aggtcaacca ccgaggacca gcctttgacc gccattgctc ccgttcgtgc 60cggcagagtt gggtctggat acgccgtctt catacctatc cagctctcac catgcagggt 120ttccatctgt ttgaagcatc cattcgcagc gcgcgagacc gctactgctt cgtgactata 180cagtacatgt aataccaaca ggagtcgagg atacgagtac taagtaccac ctattaatct 240gctgctcgtg cctcgtccgc attgaaagcg aggtaaggta ggcagaaccg ctgacccgtc 300ccccatcagg tgatgataca acagggtagt actgcggtga cctcgagata aagtacacct 360cgtgctctgg acgccggcaa cggtacccca atccgaggtc caaatctgct cgcgcggcct 420gaggcagaga caccaccgtt tgttgatctc ggttgcccca tcagccagcc agcgcacctc 480agttaggctc ggacctgggc aaaagttggg gtaacaaagg ccggcggcca aagcacccaa 540gtacctctgc ccgccattgc gggtgcagag gtgacttccg cgggccatca cggtggcgcc 600ccttgcaggg agtggtgcgt catcggctcg tcagcacggc caatagacgc aaccggcggc 660cctgctttca atgttgactg ccccaggccg agtccagtga ccacccgata gcaccatcgc 720agccacccca aatgcgacct gcaccgcgct ggccagggcc cttcggggcg cctgttagtg 780cctgcggttg ctcggcgggc gggctgctta acgtgctttg cgtgctgagc tgcctgcctg 840ccgcccgctc gccttatcta atgcccgcta cctctcctcc gtactccgtc cctacaaaga 900ggctggttcc tagcttcgtc atcctccaag ttcccttcct ctggcagcaa tcgaaccatc 960ccattcatta attaagctcc ttattgaagt cggaggacgg agcggtgtca agaggatatt 1020cttcgactct gtattataga taagatgatg aggaattgga ggtagcatag cttcatttgg 1080atttgctttc caggctgaga ctctagcttg gagcatagag ggtcctttgg ctttcaatat 1140tctcaagtat ctcgagtttg aacttattcc ctgtgaacct tttattcacc aatgagcatt 1200ggaatgaaca tgaatctgag gactgcaatc gccatgaggt tttcgaaata catccggatg 1260tcgaaggctt ggggcacctg cgttggttga atttagaacg tggcactatt gatcatccga 1320tagctctgca aagggcgttg cacaatgcaa gtcaaacgtt gctagcagtt ccaggtggaa 1380tgttatgatg agcattgtat taaatcagga gatatagcat gatctctagt tagctcacca 1440caaaagtcag acggcgtaac caaaagtcac acaacacaag ctgtaaggat ttcggcacgg 1500ctacggaaga cggagaagcc accttcagtg gactcgagta ccatttaatt ctatttgtgt 1560ttgatcgaga cctaatacag cccctacaac gaccatcaaa gtcgtatagc taccagtgag 1620gaagtggact caaatcgact tcagcaacat ctcctggata aactttaagc ctaaactata 1680cagaataaga taggtggaga gcttataccg agctcccaaa tctgtccaga tcatggttga 1740ccggtgcctg gatcttccta tagaatcatc cttattcgtt gacctagctg attctggagt 1800gacccagagg gtcatgactt gagcctaaaa tccgccgcct ccaccatttg tagaaaaatg 1860tgacgaactc gtgagctctg tacagtgacc ggtgactctt tctggcatgc ggagagacgg 1920acggacgcag agagaagggc tgagtaataa gccactggcc agacagctct ggcggctctg 1980aggtgcagtg gatgattatt aatccgggac cggccgcccc tccgccccga agtggaaagg 2040ctggtgtgcc cctcgttgac caagaatcta ttgcatcatc ggagaatatg gagcttcatc 2100gaatcaccgg cagtaagcga aggagaatgt gaagccaggg gtgtatagcc gtcggcgaaa 2160tagcatgcca ttaacctagg tacagaagtc caattgcttc cgatctggta aaagattcac 2220gagatagtac cttctccgaa gtaggtagag cgagtacccg gcgcgtaagc tccctaattg 2280gcccatccgg catctgtagg gcgtccaaat atcgtgcctc tcctgctttg cccggtgtat 2340gaaaccggaa aggccgctca ggagctggcc agcggcgcag accgggaaca caagctggca 2400gtcgacccat ccggtgctct gcactcgacc tgctgaggtc cctcagtccc tggtaggcag 2460ctttgccccg tctgtccgcc cggtgtgtcg gcggggttga

caaggtcgtt gcgtcagtcc 2520aacatttgtt gccatatttt cctgctctcc ccaccagctg ctcttttctt ttctctttct 2580tttcccatct tcagtatatt catcttccca tccaagaacc tttatttccc ctaagtaagt 2640actttgctac atccatactc catccttccc atcccttatt cctttgaacc tttcagttcg 2700agctttccca cttcatcgca gcttgactaa cagctacccc gcttgagcag acatcatgac 2760tgcccgccgc tcagcaaact atcaaccctc ctcatggtct tacgacgaat acttggtgga 2820cactactact aacgacagca aactgcgcat tcaagaagac gctcgtaaaa aattggaaga 2880agaagtgcgt aacgttctgg aagatggcaa attggaaacc ttagcactgt tggaactgat 2940tgatgacatc caacggctgg gcttgggtta taaatttcgc gaaagcacca gtacttccct 3000ggctatgttg aaaatgagtg tggggcagga agcatccaac agcagtttgc attcttgttc 3060attgtacttt cgtttactgc gggaacacgg cttcgatatt acccccgacg tgttcgaaaa 3120attcaaagat gaaaacggta aatttaaaga tagcatcgct aaagatgttc gcgggttgtt 3180atcattgtat gaagcaagct ttttagggtt cgaaggcgaa aacattttgg acgaagcccg 3240cgaattcacc actatgcatc tgaataacat caaagataaa gtgaatcccc gtatcgcgga 3300agaagttaac catgctttag aactgccgtt gcaccgccgt gtggaacgtc tggaagctcg 3360gcgccgtatt caaagctata gtaaatccgg tgaaaccaat caggccctgc tgaccctggc 3420taaaatcgat tttaacaccg tgcaggcggt ttaccaacgg gatctgcagg acgttagtaa 3480atggtggaaa gacactgcat tggccgataa attatccttc gcccgggatc gcctgatgga 3540aagctttttc tgggcgattg gtatgagcta tgatccccaa cactctaaat cacgggaagc 3600cgtgaccaaa acttttaaac tggtgaccgt tttggatgac gtgtatgacg tttacgggtc 3660tttagatgaa ctggaaaaat tcaccgccgc cgccgaacgt tgggatgttg acgcgattaa 3720agatctgccg gactacatga aattgtgtta cttatccctg tttaataccg tgaacgatct 3780ggcttatgac accttgaaag ataaaggcga aactgttatt cctatcatga agaaagcctg 3840ggctgattta ctgaaagcat ttctgcagga agcccaatgg atctacaaca aatacacccc 3900aactttcgat gaatacctga ataacgcccg tttcagcgtg agtggttgcg tgatgttggt 3960tcatagctac tttaccactc agaacatcac caaagaagcg atccattctc tggaaaacta 4020ccacgacttg ttaatttggc ctagcatcgt tttccgttta gcaaatgatc tgtcctcttc 4080aaaagccgaa attgaacggg gcgaaaccgc gaatagcatc acttgttata tgaacgaaac 4140cggtcaaagt gaagaacagg cccgtgaaca catttccaaa ctgatcgatg aatgcttcaa 4200gaaaatgaac aaagaaatgc tggccacctc cacttctccg tttgaaaaat ccttcattga 4260aaccgcgatc aacttagcac gcattgccct gtgccagtat caatacggcg atgcccatag 4320cgatccagat gttcgggcac gcaaccgcat tgtgtcagtt atcattaatc cagtggaatg 4380gtcccaccca caatttgaaa agtaagatcc acttaacgtt actgaaatca tcaaacagct 4440tgacgaatct ggatataaga tcgttggtgt cgatgtcagc tccggagttg agacaaatgg 4500tgttcaggat ctcgataaga tacgttcatt tgtccaagca gcaaagagtg ccttctagtg 4560atttaatagc tccatgtcaa caagaataaa acgcgtttcg ggtttacctc ttccagatac 4620agctcatctg caatgcatta atgcattgga cctcgcaacc ctagtacgcc cttcaggctc 4680cggcgaagca gaagaatagc ttagcagagt ctattttcat tttcgggaga cgagatcaag 4740cagatcaacg gtcgtcaaga gacctacgag actgaggaat ccgctcttgg ctccacgcga 4800ctatatattt gtctctaatt gtactttgac atgctcctct tctttactct gatagcttga 4860ctatgaaaat tccgtcacca gcccctgggt tcgcaaagat aattgcactg tttcttcctt 4920gaactctcaa gcctacagga cacacattca tcgtaggtat aaacctcgaa aatcattcct 4980actaagatgg gtatacaata gtaaccatgc atggttgcct agtgaatgct ccgtaacacc 5040caatacgccg gccgaaactt ttttacaact ctcctatgag tcgtttaccc agaatgcaca 5100ggtacacttg tttagaggta atccttcttt ctagaagtcc tcgtgtactg tgtaagcgcc 5160cactccacat ctccactctt aattaagcgg ccgcataacg gtgagactag cggccggtcc 5220ccttatccca gctgttccac gttggcctgc ccctcagtta gcgctcaact caatgcccct 5280cactggcgag gcgagggcaa ggatggaggg gcagcatcgc ctgagttgga gcaaagcggc 5340cccatgggag cagcgaacca acggagggat gccgtgcttt gtcgtggctg ctgtggccaa 5400tccgggccct tggttggctc acagagcgtt gctgtgagac catgagctat tattgctagg 5460tacagtatag agagaggaga gagagagaga gagagagaga ggggaaaaaa ggtgaggttg 5520aagtgagaaa aaaaaaaaaa aaaaaaaatc caaccactga cggctgccgg ctctgccacc 5580cccctccctc caccccagac cacctgcaca ctcagcgcgc agcatcacct aatcttggct 5640cgccttcccg cagctcaggt tgtttttttt ttctctctcc ctcgtcgaag ccgcccttgt 5700tcccttattt atttccctct ccatccttgt ctgcctttgg tccatctgcc cctttgtctg 5760catctctttt gcacgcatcg ccttatcgtc gtctcttttt tcactcacgg gagcttgacg 5820aagacctgac tcgtgagcct cacctgctga tttctctccc cccctcccga ccggcttgac 5880ttttgtttct cctccagtac cttatcgcga agccggaaga acctcttaac ctctagatga 5940aaaagcctga actcaccgcg acgtctgtcg agaagttcct gatcgaaaag ttcgacagcg 6000tctccgacct gatgcagctc tcggagggcg aagaatctcg tgctttcagc ttcgatgtag 6060gagggcgtgg atatgtcctg cgggtaaata gctgcgccga tggtttctac aaagatcgtt 6120atgtttatcg gcactttgca tcggccgcgc tcccgattcc ggaagtgctt gacattgggg 6180aattcagcga gagcctgacc tattgcatct cccgccgtgc acagggtgtc acgttgcaag 6240acctgcctga aaccgaactg cccgctgttc tgcagccggt cgcggaggcc atggatgcga 6300tcgctgcggc cgatctcagc cagacgagcg ggttcggccc attcggaccg caaggaatcg 6360gtcaatacac tacatggcgt gatttcatat gcgcgattgc tgatccccat gtgtatcact 6420ggcaaactgt gatggacgac accgtcagtg cgtccgtcgc gcaggctctc gatgagctga 6480tgctttgggc cgaggactgc cccgaagtcc ggcacctcgt gcacgcggat ttcggctcca 6540acaatgtcct gacggacaat ggccgcataa cagcggtcat tgactggagc gaggcgatgt 6600tcggggattc ccaatacgag gtcgccaaca tcttcttctg gaggccgtgg ttggcttgta 6660tggagcagca gacgcgctac ttcgagcgga ggcacccgga gcttgcagga tcgccgcggc 6720tccgggcgta tatgctccgc attggtcttg accaactcta tcagagcttg gttgacggca 6780atttcgatga tgcagcttgg gcgcagggtc gatgcgacgc aatcgtccga tccggagccg 6840ggactgtcgg gcgtacacaa atcgcccgca gaagcgcggc cgtctggacc gatggctgtg 6900tagaagtact cgccgatagt ggaaaccgac gccccagcac tcgtccgagg gcaaaggaat 6960agatgcatgg ctttcgtgac cgggcttcaa acaatgatgt gcgatggtgt ggttcccggt 7020tggcggagtc tttgtctact ttggttgtct gtcgcaggtc ggtagaccgc aaatgagcaa 7080ctgatggatt gttgccagcg atactataat tcacatggat ggtctttgtc gatcagtagc 7140tagtgagaga gagagaacat ctatccacaa tgtcgagtgt ctattagaca tactccgaga 7200ataaagtcaa ctgtgtctgt gatctaaaga tcgattcggc agtcgagtag cgtataacaa 7260ctccgagtac cagcgaaagc acgtcgtgac aggagcaggg ctttgccaac tgcgcaacct 7320tgcttgaatg aggatacacg gggtgcaaca tggctgtact gatccatcgc aaccaaaatt 7380tctgtttata gatcaagctg gtagattcca attactccac ctcttgcgct tctccatgac 7440atgtaagtgc acgtggaaac catacccaaa ttgcctacag ctgcggagca tgagcctatg 7500gcgatcagtc tggtcatgtt aaccagcctg tgctctgacg ttaatgcaga atagaaagcc 7560gcggttgcaa tgcaaatgat gatgcctttg cagaaatggc ttgctcgctg actgatacca 7620gtaacaactt tgcttggccg tctagcgctg ttgattgtat tcatcacaac ctcgtctccc 7680tcctttgggt tgagctcttt ggatggcttt ccaaacgtta atagcgcgtt tttctccaca 7740aagtattcgt atggacgcgc ttttgcgtgt attgcgtgag ctaccagcag cccaattggc 7800gaagtcttga gccgcatcgc atagaataat tgattgcgca tttgatgcga tttttgagcg 7860gctgtttcag gcgacatttc gcccgccctt atttgctcca ttatatcatc gacggcatgt 7920ccaatagccc ggtgatagtc ttgtcgaata tggctgtcgt ggataaccca tcggcagcag 7980atgataatga ttccgcagca cgcggccgca ggtagacgct ttgcgagtgt gtgtgtatct 8040aagaagtgca catcctgtat gtttgcagaa tgctgggtag ttttggttat ttgggcagtt 8100tgagagcgga agacagtcct actgctgcgg aggagtctgg atcaagattg caacgtcgtt 8160tatgtaataa ctataatgga gactggccgt cgtctgctgc cgctatttgg ttcggtgtca 8220tgatctcgtg cctttgcgag gcgctcatct cgattgattg attgattggc ctgtctcgac 8280atgtcgatac taaccttgcc gcggccgaac gattccattt ttgcttgctt ggtcaattgt 8340actggtgtcg ccgggacctt tgtcagagcg agctgcccgt acctaccaac tacctagtag 8400gtgccatcaa atgacgtgct gcaagctatc gcgaccagcc aggtcagccg cgtgtcacat 8460gtaaggtcag agctaataag atgcgacatt ctgtgcattg ctagcaccgc caatactagc 8520acgaaacggc tttggcacct cagtggcagg ccgaagttcg cgtgggatgg gatccattta 8580ttaccctgca ttatacgggg agagctacag gtcttgagcg agtatcatcc aacgggcagt 8640tgtttataag gatcaaagga caggttgtta ataccgaatt tacattaaga agtagaatgc 8700aagatgagtt gtgaactgta atctcctgtg tttactgccc aaggtaggtg gcttagcatg 8760ttagcagcaa tacattctta cctgtagcat ctggcgccgc tacctagtat caatatgatc 8820caggcactaa ggcgtgttcc gcctcgacta cctcacagat gcatgatgca agttttgatg 8880gaaaatgtcc gcgtctctgc tttcaacaaa ggccgccaac cgcccgctcc agccaaacaa 8940gaacgcggct gcaataccca tcatctttca cagacaagcc gaatcagtcc gcgtcagttc 9000agtttaaacg ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatagg 9060agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgaggtaac tcacattaat 9120tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg 9180aatcggccaa cgcgcgggga gaggcggttt gcgtattggg cgctcttccg cttcctcgct 9240cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 9300ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 9360ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 9420cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 9480actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 9540cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 9600tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 9660gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 9720caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 9780agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 9840tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 9900tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 9960gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 10020gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 10080aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 10140atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 10200gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 10260acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 10320ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc 10380tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag 10440ttcgccagtt aatagtttgc gcaacgttgt tgccattgct acaggcatcg tggtgtcacg 10500ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg 10560atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag 10620taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 10680catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga 10740atagtgtatg cggcgaccga gttgctcttg cccggcgtca atacgggata ataccgcgcc 10800acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 10860aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc 10920ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc 10980cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca 11040atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat 11100ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgaacg 11160aagcatctgt gcttcatttt gtagaacaaa aatgcaacgc gagagcgcta atttttcaaa 11220caaagaatct gagctgcatt tttacagaac agaaatgcaa cgcgaaagcg ctattttacc 11280aacgaagaat ctgtgcttca tttttgtaaa acaaaaatgc aacgcgagag cgctaatttt 11340tcaaacaaag aatctgagct gcatttttac agaacagaaa tgcaacgcga gagcgctatt 11400ttaccaacaa agaatctata cttctttttt gttctacaaa aatgcatccc gagagcgcta 11460tttttctaac aaagcatctt agattacttt ttttctcctt tgtgcgctct ataatgcagt 11520ctcttgataa ctttttgcac tgtaggtccg ttaaggttag aagaaggcta ctttggtgtc 11580tattttctct tccataaaaa aagcctgact ccacttcccg cgtttactga ttactagcga 11640agctgcgggt gcattttttc aagataaagg catccccgat tatattctat accgatgtgg 11700attgcgcata ctttgtgaac agaaagtgat agcgttgatg attcttcatt ggtcagaaaa 11760ttatgaacgg tttcttctat tttgtctcta tatactacgt ataggaaatg tttacatttt 11820cgtattgttt tcgattcact ctatgaatag ttcttactac aatttttttg tctaaagagt 11880aatactagag ataaacataa aaaatgtaga ggtcgagttt agatgcaagt tcaaggagcg 11940aaaggtggat gggtaggtta tatagggata tagcacagag atatatagca aagagatact 12000tttgagcaat gtttgtggaa gcggtattcg caatatttta gtagctcgtt acagtccggt 12060gcgtttttgg ttttttgaaa gtgcgtcttc agagcgcttt tggttttcaa aagcgctctg 12120aagttcctat actttctaga gaataggaac ttcggaatag gaacttcaaa gcgtttccga 12180aaacgagcgc ttccgaaaat gcaacgcgag ctgcgcacat acagctcact gttcacgtcg 12240cacctatatc tgcgtgttgc ctgtatatat atatacatga gaagaacggc atagtgcgtg 12300tttatgctta aatgcgtact tatatgcgtc tatttatgta ggatgaaagg tagtctagta 12360cctcctgtga tattatccca ttccatgcgg ggtatcgtat gcttccttca gcactaccct 12420ttagctgttc tatatgctgc cactcctcaa ttggattagt ctcatccttc aatgctatca 12480tttcctttga tattggatca tactaagaaa ccattattat catgacatta acctataaaa 12540ataggcgtat cacgaggccc tttcgtctcg cgcgtttcgg tgatgacggt gaaaacctct 12600gacacatgca gctcccggag acggtcacag cttgtctgta agcggatgcc gggagcagac 12660aagcccgtca gggcgcgtca gcgggtgttg gcgggtgtcg gggctggctt aactatgcgg 12720catcagagca gattgtactg agagtgcacc ataccacagc ttttcaattc aattcatcat 12780ttttttttta ttcttttttt tgatttcggt ttctttgaaa tttttttgat tcggtaatct 12840ccgaacagaa ggaagaacga aggaaggagc acagacttag attggtatat atacgcatat 12900gtagtgttga agaaacatga aattgcccag tattcttaac ccaactgcac agaacaaaaa 12960cctgcaggaa acgaagataa atcatgtcga aagctacata taaggaacgt gctgctactc 13020atcctagtcc tgttgctgcc aagctattta atatcatgca cgaaaagcaa acaaacttgt 13080gtgcttcatt ggatgttcgt accaccaagg aattactgga gttagttgaa gcattaggtc 13140ccaaaatttg tttactaaaa acacatgtgg atatcttgac tgatttttcc atggagggca 13200cagttaagcc gctaaaggca ttatccgcca agtacaattt tttactcttc gaagacagaa 13260aatttgctga cattggtaat acagtcaaat tgcagtactc tgcgggtgta tacagaatag 13320cagaatgggc agacattacg aatgcacacg gtgtggtggg cccaggtatt gttagcggtt 13380tgaagcaggc ggcagaagaa gtaacaaagg aacctagagg ccttttgatg ttagcagaat 13440tgtcatgcaa gggctcccta tctactggag aatatactaa gggtactgtt gacattgcga 13500agagcgacaa agattttgtt atcggcttta ttgctcaaag agacatgggt ggaagagatg 13560aaggttacga ttggttgatt atgacacccg gtgtgggttt agatgacaag ggagacgcat 13620tgggtcaaca gtatagaacc gtggatgatg tggtctctac aggatctgac attattattg 13680ttggaagagg actatttgca aagggaaggg atgctaaggt agagggtgaa cgttacagaa 13740aagcaggctg ggaagcatat ttgagaagat gcggccagca aaactaaaaa actgtattat 13800aagtaaatgc atgtatacta aactcacaaa ttagagcttc aatttaatta tatcagttat 13860taccctatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggaaa 13920ttgtaaacgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt 13980ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag 14040ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg 14100tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca tcaccctaat 14160caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa gggagccccc 14220gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg aagaaagcga 14280aaggagcggg cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta accaccacac 14340ccgccgcgct taatgcgccg ctacagggcg cgtcgcgcca ttcgccattc aggctgcgca 14400actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 14460gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgacg 145151320DNAArtificial77579_5f primer 13tcaggtcaac caccgaggac 201420DNAArtificial77579_5r primer 14tgaatgggat ggttcgattg 201520DNAArtificial77579_3f primer 15aggtagacgc tttgcgagtg 201618DNAArtificial77579_3r primer 16tgaactgacg cggactga 181759DNAArtificialC017_gpdA_rec_for primer 17cctctggcag caatcgaacc atcccattca ttaattaagc tccttattga agtcggagg 591858DNAArtificialC018_gpdA_rec_rev primer 18atgaggaggg ttgatagttt gctgagcggc gggcagtcat gatgtctgct caagcggg 581965DNAArtificialC019_trpC_rec_for primer 19taatccagtg gaatggtccc acccacaatt tgaaaagtaa gatccactta acgttactga 60aatca 652066DNAArtificialC020_trpC_rec_rev primer 20aaggggaccg gccgctagtc tcaccgttat gcggccgctt aattaagagt ggagatgtgg 60agtggg 662160DNAArtificialC021_pep4_3frec_for primer 21gataacccat cggcagcaga tgataatgat tccgcagcac gcggccgcag gtagacgctt 602220DNAArtificialC022_pep4_3f_rev primer 22gaggtgccaa agccgtttcg 202320DNAArtificialT302_77579_5int primer 23gattcatcac aggggcagtc 202421DNAArtificialT624_gpdA_seqR1 primer 24ctccatattc tccgatgatg c 212520DNAArtificialT302_77579_5int primer 25gattcatcac aggggcagtc 202620DNAArtificialC046_gpdA_rev primer 26tatcctcttg acaccgctcc 202719DNAArtificialT415_77579_3screen primer 27acgccgttgc tgagccttg 192820DNAArtificialT1411_cbh2t_end_f primer 28ccaatagccc ggtgatagtc 202919DNAArtificialT415_77579_3screen primer 29acgccgttgc tgagccttg 193020DNAArtificialT1404_cbh2term_for primer 30ccgtctagcg ctgttgattg 203120DNAArtificialC009_Ibat_for1 primer 31gatcaactta gcacgcattg 203218DNAArtificialC029_PKIp_rev primer 32tttgctccaa ctcaggcg 18331650DNAArtificialpolynucleotide sequence encoding the isoprene synthase optimized by codon optimization for yeast 33atgacagcca gaagatcagc aaactatcaa ccttcatcat ggtcctacga cgaatacttg 60gtcgatacaa caacaaacga ttctaaatta agaatacaag aagacgcaag aaagaaattg 120gaagaagaag taagaaacgt tttggaagat ggtaaattag aaactttggc cttgttggaa 180ttgatcgatg acattcaaag attgggttta ggttacaagt ttagagaatc aacatccacc 240agtttagcca tgttgaagat gtcagttggt caagaagcat ctaattcttc tttgcattct 300tgttcattgt actttagatt gttgagagaa cacggtttcg atataacacc agacgtattc 360gaaaaattca aggatgaaaa cggtaaattc aaagattcta tcgctaagga tgttagaggt 420ttgttaagtt tatatgaagc atcatttttg ggtttcgaag gtgaaaacat attggatgaa 480gctagagagt ttactacaat gcacttgaat aacatcaagg ataaggtcaa cccaagaata 540gcagaagaag taaaccatgc cttggaatta cctttgcaca gaagagttga aagattagaa 600gctagaagaa gaatacaatc ctacagtaag tctggtgaaa ccaatcaagc attgttgact 660ttggcaaaga

tcgatttcaa cactgtccaa gcagtatacc aaagagattt gcaagacgtt 720tcaaaatggt ggaaggacac agctttagca gataaattgt ccttcgcaag agatagattg 780atggaatctt tcttttgggc catcggcatg tcttacgatc cacaacactc aaagtccaga 840gaagctgtca ctaagacttt taaattggtt accgtcttgg atgacgttta tgacgtctac 900ggttctttag atgaattgga aaaattcact gctgcagccg aaagatggga tgtagacgct 960ataaaagatt tgcctgacta catgaagttg tgttacttat cattgtttaa tactgttaac 1020gatttggcat atgacacatt gaaagataag ggtgaaaccg tcattccaat aatgaaaaag 1080gcttgggctg atttgttaaa agccttctta caagaagctc aatggatcta taataagtac 1140acccctactt tcgatgaata cttaaataac gctagattca gtgtttctgg ttgcgtaatg 1200ttggttcatt cttactttac cactcaaaac atcacaaagg aagcaatcca tagtttggaa 1260aactaccacg acttgttaat atggccttct atcgtcttca gattagctaa tgatttgtcc 1320agttctaagg cagaaatcga aagaggtgaa actgccaatt ctatcacatg ttacatgaac 1380gaaacaggtc aatcagaaga acaagctaga gaacatatct ccaaattgat cgatgaatgc 1440ttcaaaaaga tgaataagga aatgttggcc acatcaacct ccccatttga aaaatcattc 1500atcgaaaccg ctattaactt agcaagaatt gccttgtgcc aatatcaata cggtgacgct 1560cactctgatc ctgacgttag agcaagaaat agaatcgtaa gtgtcatcat taatccagtc 1620gaatggtcac atccacaatt tgaaaagtaa 1650341578DNAArtificialTruncated S. cerevisiae HMG1 ORF 34atggaccaat tggtgaaaac tgaagtcacc aagaagtctt ttactgctcc tgtacaaaag 60gcttctacac cagttttaac caataaaaca gtcatttctg gatcgaaagt caaaagttta 120tcatctgcgc aatcgagctc atcaggacct tcatcatcta gtgaggaaga tgattcccgc 180gatattgaaa gcttggataa gaaaatacgt cctttagaag aattagaagc attattaagt 240agtggaaata caaaacaatt gaagaacaaa gaggtcgctg ccttggttat tcacggtaag 300ttacctttgt acgctttgga gaaaaaatta ggtgatacta cgagagcggt tgcggtacgt 360aggaaggctc tttcaatttt ggcagaagct cctgtattag catctgatcg tttaccatat 420aaaaattatg actacgaccg cgtatttggc gcttgttgtg aaaatgttat aggttacatg 480cctttgcccg ttggtgttat aggccccttg gttatcgatg gtacatctta tcatatacca 540atggcaacta cagagggttg tttggtagct tctgccatgc gtggctgtaa ggcaatcaat 600gctggcggtg gtgcaacaac tgttttaact aaggatggta tgacaagagg cccagtagtc 660cgtttcccaa ctttgaaaag atctggtgcc tgtaagatat ggttagactc agaagaggga 720caaaacgcaa ttaaaaaagc ttttaactct acatcaagat ttgcacgtct gcaacatatt 780caaacttgtc tagcaggaga tttactcttc atgagattta gaacaactac tggtgacgca 840atgggtatga atatgatttc taaaggtgtc gaatactcat taaagcaaat ggtagaagag 900tatggctggg aagatatgga ggttgtctcc gtttctggta actactgtac cgacaaaaaa 960ccagctgcca tcaactggat cgaaggtcgt ggtaagagtg tcgtcgcaga agctactatt 1020cctggtgatg ttgtcagaaa agtgttaaaa agtgatgttt ccgcattggt tgagttgaac 1080attgctaaga atttggttgg atctgcaatg gctgggtctg ttggtggatt taacgcacat 1140gcagctaatt tagtgacagc tgttttcttg gcattaggac aagatcctgc acaaaatgtt 1200gaaagttcca actgtataac attgatgaaa gaagtggacg gtgatttgag aatttccgta 1260tccatgccat ccatcgaagt aggtaccatc ggtggtggta ctgttctaga accacaaggt 1320gccatgttgg acttattagg tgtaagaggc ccgcatgcta ccgctcctgg taccaacgca 1380cgtcaattag caagaatagt tgcctgtgcc gtcttggcag gtgaattatc cttatgtgct 1440gccctagcag ccggccattt ggttcaaagt catatgaccc acaacaggaa acctgctgaa 1500ccaacaaaac ctaacaattt ggacgccact gatataaatc gtttgaaaga tgggtccgtc 1560acctgcatta aatcctaa 157835867DNAArtificialS. cerevisiae IDI1 ORF 35atgactgccg acaacaatag tatgccccat ggtgcagtat ctagttacgc caaattagtg 60caaaaccaaa cacctgaaga cattttggaa gagtttcctg aaattattcc attacaacaa 120agacctaata cccgatctag tgagacgtca aatgacgaaa gcggagaaac atgtttttct 180ggtcatgatg aggagcaaat taagttaatg aatgaaaatt gtattgtttt ggattgggac 240gataatgcta ttggtgccgg taccaagaaa gtttgtcatt taatggaaaa tattgaaaag 300ggtttactac atcgtgcatt ctccgtcttt attttcaatg aacaaggtga attactttta 360caacaaagag ccactgaaaa aataactttc cctgatcttt ggactaacac atgctgctct 420catccactat gtattgatga cgaattaggt ttgaagggta agctagacga taagattaag 480ggcgctatta ctgcggcggt gagaaaacta gatcatgaat taggtattcc agaagatgaa 540actaagacaa ggggtaagtt tcacttttta aacagaatcc attacatggc accaagcaat 600gaaccatggg gtgaacatga aattgattac atcctatttt ataagatcaa cgctaaagaa 660aacttgactg tcaacccaaa cgtcaatgaa gttagagact tcaaatgggt ttcaccaaat 720gatttgaaaa ctatgtttgc tgacccaagt tacaagttta cgccttggtt taagattatt 780tgcgagaatt acttattcaa ctggtgggag caattagatg acctttctga agtggaaaat 840gacaggcaaa ttcatagaat gctataa 867361650DNAArtificialI. batatas IspS with C-terminal strepII tag (underlined) for expression in T. reesei 36atgactgccc gccgctcagc aaactatcaa ccctcctcat ggtcttacga cgaatacttg 60gtggacacta ctactaacga cagcaaactg cgcattcaag aagacgctcg taaaaaattg 120gaagaagaag tgcgtaacgt tctggaagat ggcaaattgg aaaccttagc actgttggaa 180ctgattgatg acatccaacg gctgggcttg ggttataaat ttcgcgaaag caccagtact 240tccctggcta tgttgaaaat gagtgtgggg caggaagcat ccaacagcag tttgcattct 300tgttcattgt actttcgttt actgcgggaa cacggcttcg atattacccc cgacgtgttc 360gaaaaattca aagatgaaaa cggtaaattt aaagatagca tcgctaaaga tgttcgcggg 420ttgttatcat tgtatgaagc aagcttttta gggttcgaag gcgaaaacat tttggacgaa 480gcccgcgaat tcaccactat gcatctgaat aacatcaaag ataaagtgaa tccccgtatc 540gcggaagaag ttaaccatgc tttagaactg ccgttgcacc gccgtgtgga acgtctggaa 600gctcggcgcc gtattcaaag ctatagtaaa tccggtgaaa ccaatcaggc cctgctgacc 660ctggctaaaa tcgattttaa caccgtgcag gcggtttacc aacgggatct gcaggacgtt 720agtaaatggt ggaaagacac tgcattggcc gataaattat ccttcgcccg ggatcgcctg 780atggaaagct ttttctgggc gattggtatg agctatgatc cccaacactc taaatcacgg 840gaagccgtga ccaaaacttt taaactggtg accgttttgg atgacgtgta tgacgtttac 900gggtctttag atgaactgga aaaattcacc gccgccgccg aacgttggga tgttgacgcg 960attaaagatc tgccggacta catgaaattg tgttacttat ccctgtttaa taccgtgaac 1020gatctggctt atgacacctt gaaagataaa ggcgaaactg ttattcctat catgaagaaa 1080gcctgggctg atttactgaa agcatttctg caggaagccc aatggatcta caacaaatac 1140accccaactt tcgatgaata cctgaataac gcccgtttca gcgtgagtgg ttgcgtgatg 1200ttggttcata gctactttac cactcagaac atcaccaaag aagcgatcca ttctctggaa 1260aactaccacg acttgttaat ttggcctagc atcgttttcc gtttagcaaa tgatctgtcc 1320tcttcaaaag ccgaaattga acggggcgaa accgcgaata gcatcacttg ttatatgaac 1380gaaaccggtc aaagtgaaga acaggcccgt gaacacattt ccaaactgat cgatgaatgc 1440ttcaagaaaa tgaacaaaga aatgctggcc acctccactt ctccgtttga aaaatccttc 1500attgaaaccg cgatcaactt agcacgcatt gccctgtgcc agtatcaata cggcgatgcc 1560catagcgatc cagatgttcg ggcacgcaac cgcattgtgt cagttatcat taatccagtg 1620gaatggtccc acccacaatt tgaaaagtaa 165037553PRTQuercus petraea 37Met Thr Glu Arg Gln Ser Ala Asn Phe Gln Pro Ser Leu Trp Ser Tyr 1 5 10 15 Glu Tyr Ile Gln Ser Leu Lys Asn Gly Tyr Glu Ala Asp Leu Tyr Glu 20 25 30 Asp Arg Ala Lys Lys Leu Gly Glu Glu Val Arg Arg Met Ile Asn Asn 35 40 45 Lys Asp Thr Lys Leu Leu Thr Thr Leu Glu Leu Ile Asp Asp Ile Glu 50 55 60 Arg Leu Gly Leu Gly Tyr Arg Phe Lys Glu Glu Ile Met Arg Ala Leu 65 70 75 80 Asp Arg Phe Val Thr Leu Lys Gly Cys Glu Glu Phe Thr Asn Gly Ser 85 90 95 Ile His Asp Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln His Gly Phe 100 105 110 Gly Val Ser Gln Asp Met Phe Asn Cys Phe Lys Asp Gln Lys Gly Asn 115 120 125 Phe Lys Glu Cys Leu Ser Lys Asp Ile Lys Gly Leu Leu Ser Leu Tyr 130 135 140 Glu Ala Ser Tyr Leu Gly Phe Glu Gly Glu Asn Leu Leu Asp Glu Ala 145 150 155 160 Arg Glu Phe Thr Thr Met His Leu Lys Asp Leu Lys Gly Asp Val Ser 165 170 175 Arg Thr Leu Lys Glu Glu Val Arg His Ser Leu Glu Met Pro Leu His 180 185 190 Arg Arg Met Arg Arg Leu Glu Gln Arg Trp Tyr Ile Asp Ala Tyr Asn 195 200 205 Met Lys Glu Ala His Asp Arg Lys Leu Leu Glu Leu Ala Lys Leu Asp 210 215 220 Phe Asn Ile Val Gln Ser Val His Gln Arg Asp Leu Lys Asp Met Ser 225 230 235 240 Arg Trp Trp Gln Glu Met Gly Leu Gly Asn Lys Leu Ser Phe Ala Arg 245 250 255 Asp Arg Leu Met Glu Cys Phe Phe Phe Ser Val Gly Met Ala Phe Glu 260 265 270 Pro Gln Phe Ser Asn Ser Arg Lys Ala Val Thr Lys Met Phe Ser Phe 275 280 285 Ile Thr Val Ile Asp Asp Ile Tyr Asp Val Tyr Ala Thr Leu Glu Glu 290 295 300 Leu Glu Met Phe Thr Asp Ile Val Gln Arg Trp Asp Val Lys Ala Val 305 310 315 320 Lys Asp Leu Pro Glu Tyr Met Lys Leu Cys Phe Leu Ala Leu Phe Asn 325 330 335 Thr Val Asn Glu Met Val Tyr Asp Thr Leu Lys Glu Gln Gly Val Asp 340 345 350 Ile Leu Pro Tyr Leu Thr Lys Ala Trp Gly Asp Ile Cys Lys Ala Phe 355 360 365 Leu Gln Glu Thr Lys Trp Arg Tyr Tyr Lys Arg Thr Pro Ser Ser Glu 370 375 380 Asp Tyr Leu Asp Asn Ala Trp Ile Ser Val Ser Gly Ala Leu Leu Leu 385 390 395 400 Ile His Ala Tyr Phe Leu Met Ser Pro Ser Ile Thr Asp Arg Ala Leu 405 410 415 Lys Gly Leu Glu Asp Tyr His Asn Ile Leu Arg Trp Pro Ser Ile Ile 420 425 430 Phe Arg Leu Thr Asn Asp Leu Gly Thr Ser Thr Ala Glu Leu Glu Arg 435 440 445 Gly Glu Thr Ala Asn Ser Ile Leu Cys Tyr Met Arg Glu Thr Ser Arg 450 455 460 Ser Glu Asp Phe Ala Arg Glu His Ile Ser Asn Leu Ile Asp Lys Thr 465 470 475 480 Trp Lys Lys Met Asn Lys Asp Arg Phe Ser Asp Ser Pro Phe Glu Glu 485 490 495 Pro Phe Leu Glu Thr Ala Ile Asn Leu Ala Arg Ile Ser His Cys Ile 500 505 510 Tyr Gln His Gly Asp Gly His Gly Ala Pro Asp Thr Arg Thr Lys Asp 515 520 525 Arg Val Leu Ser Leu Ile Ile Glu Pro Ile Pro Cys Tyr Asp Pro Ser 530 535 540 Thr Asn Phe His Ser Gln Ile His Leu 545 550 38583PRTMelaleuca alternifolia 38Met Ala Leu Arg Leu Leu Ser Thr Pro His Leu Pro Gln Leu Cys Ser 1 5 10 15 Arg Arg Val Ser Gly Arg Val His Cys Ser Ala Ser Thr Gln Val Ser 20 25 30 Asp Ala Gln Gly Gly Arg Arg Ser Ala Asn Tyr Gln Pro Ser Val Trp 35 40 45 Thr Tyr Asn Tyr Leu Gln Ser Leu Val Ala Asp Asp Ile Arg Arg Ser 50 55 60 Arg Arg Glu Val Glu Gln Glu Arg Glu Lys Ala Gln Ile Leu Glu Glu 65 70 75 80 Asp Val Arg Gly Ala Leu Asn Asp Gly Asn Ala Glu Pro Met Ala Ile 85 90 95 Phe Ala Leu Val Asp Asp Ile Gln Arg Leu Gly Leu Gly Arg Tyr Phe 100 105 110 Glu Glu Asp Ile Ser Lys Ala Leu Arg Arg Cys Leu Ser Gln Tyr Ala 115 120 125 Val Thr Gly Ser Leu Gln Lys Ser Leu His Gly Thr Ala Leu Ser Phe 130 135 140 Arg Val Leu Arg Gln His Gly Phe Glu Val Ser Gln Asp Val Phe Lys 145 150 155 160 Ile Phe Met Asp Glu Ser Gly Ser Phe Met Lys Thr Leu Gly Gly Asp 165 170 175 Val Gln Gly Met Leu Ser Leu Tyr Glu Ala Ser His Leu Ala Phe Glu 180 185 190 Glu Glu Asp Ile Leu His Lys Ala Lys Thr Phe Ala Ile Lys His Leu 195 200 205 Glu Asn Leu Asn His Asp Ile Asp Gln Asp Leu Gln Asp His Val Asn 210 215 220 His Glu Leu Glu Leu Pro Leu His Arg Arg Met Pro Leu Leu Glu Ala 225 230 235 240 Arg Arg Phe Ile Glu Ala Tyr Ser Arg Arg Ser Asn Val Asn Pro Arg 245 250 255 Ile Leu Glu Leu Ala Val Met Lys Phe Asn Ser Ser Gln Leu Thr Leu 260 265 270 Gln Arg Asp Leu Gln Asp Met Leu Gly Trp Trp Asn Asn Val Gly Leu 275 280 285 Ala Lys Arg Leu Ser Phe Ala Arg Asp Arg Leu Met Glu Cys Phe Phe 290 295 300 Trp Ala Val Gly Ile Ala Arg Glu Pro Ala Leu Ser Asn Cys Arg Lys 305 310 315 320 Gly Val Thr Lys Ala Phe Ser Leu Ile Leu Val Leu Asp Asp Val Tyr 325 330 335 Asp Val Phe Gly Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val 340 345 350 Arg Arg Trp His Glu Asp Ala Val Glu Asn Leu Pro Gly Tyr Met Lys 355 360 365 Leu Cys Phe Leu Ala Leu Tyr Asn Ser Val Asn Asp Met Ala Tyr Glu 370 375 380 Thr Leu Lys Glu Thr Gly Glu Asn Val Thr Pro Tyr Leu Thr Lys Val 385 390 395 400 Trp Tyr Asp Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser Tyr 405 410 415 Asn Lys Ile Thr Pro Gly Val Glu Glu Tyr Leu Asn Asn Gly Trp Val 420 425 430 Ser Ser Ser Gly Gln Val Met Leu Thr His Ala Tyr Phe Leu Ser Ser 435 440 445 Pro Ser Leu Arg Lys Glu Glu Leu Glu Ser Leu Glu His Tyr His Asp 450 455 460 Leu Leu Arg Leu Pro Ser Leu Ile Phe Arg Leu Thr Asn Asp Leu Ala 465 470 475 480 Thr Ser Ser Ala Glu Leu Gly Arg Gly Glu Thr Thr Asn Ser Ile Leu 485 490 495 Cys Tyr Met Arg Glu Lys Gly Phe Ser Glu Ser Glu Ala Arg Lys Gln 500 505 510 Val Ile Glu Gln Ile Asp Thr Ala Trp Arg Gln Met Asn Lys Tyr Met 515 520 525 Val Asp His Ser Thr Phe Asn Arg Ser Phe Met Gln Met Thr Tyr Asn 530 535 540 Leu Ala Arg Met Ala His Cys Val Tyr Gln Asp Gly Asp Ala Ile Gly 545 550 555 560 Ala Pro Asp Asp Gln Ser Trp Asn Arg Val His Ser Leu Ile Ile Lys 565 570 575 Pro Val Ser Leu Ala Pro Cys 580 39582PRTEucalyptus globulus 39Met Ala Leu Arg Leu Leu Phe Thr Pro His Leu Pro Val Leu Ser Ser 1 5 10 15 Arg Arg Ala Asn Gly Arg Val Arg Cys Ser Ala Ser Thr Gln Ile Ser 20 25 30 Asp Pro Gln Glu Gly Arg Arg Ser Ala Asn Tyr Gln Pro Ser Val Trp 35 40 45 Thr Tyr Asn Tyr Leu Gln Ser Ile Val Ala Gly Glu Gly Arg Gln Ser 50 55 60 Arg Arg Glu Val Glu Gln Gln Lys Glu Lys Val Gln Ile Leu Glu Glu 65 70 75 80 Glu Val Arg Gly Ala Leu Asn Asp Glu Lys Ala Glu Thr Phe Thr Ile 85 90 95 Phe Ala Thr Val Asp Asp Ile Gln Arg Leu Gly Leu Gly Asp His Phe 100 105 110 Glu Glu Asp Ile Ser Asn Ala Leu Arg Arg Cys Val Ser Lys Gly Ala 115 120 125 Val Phe Met Ser Leu Gln Lys Ser Leu His Gly Thr Ala Leu Gly Phe 130 135 140 Arg Leu Leu Arg Gln His Gly Tyr Glu Val Ser Gln Asp Val Phe Lys 145 150 155 160 Ile Phe Leu Asp Glu Ser Gly Ser Phe Val Lys Thr Leu Gly Gly Asp 165 170 175 Val Gln Gly Val Leu Ser Leu Tyr Glu Ala Ser His Leu Ala Phe Glu 180 185 190 Glu Glu His Ile Leu His Lys Ala Arg Ser Phe Ala Ile Lys His Leu 195 200 205 Glu Asn Leu Asn Ser Asp Val Asp Lys Asp Leu Gln Asp Gln Val Lys 210 215 220 His Glu Leu Glu Leu Pro Leu His Arg Arg Met Pro Leu Leu Glu Ala 225 230 235 240 Arg Arg Ser Ile Glu Ala Tyr Ser Arg Arg Gly Tyr Thr Asn Pro Gln 245 250 255 Ile Leu Glu Leu Ala Leu Thr Asp Phe Asn Val Ser Gln Ser Tyr Leu 260 265 270 Gln Arg Asp Leu Gln Glu Met Leu Gly Trp Trp Asn Asn Thr Gly Leu 275 280 285 Ala Lys Arg Leu Ser Phe Ala Arg Asp Arg Leu Ile Glu Cys Phe Phe 290 295 300 Trp Ala Val Gly Ile Ala His Glu Pro Ser Leu Ser Ile Cys Arg Lys 305 310 315 320 Ala Val Thr Lys Ala Phe Ala Leu Ile Leu Val Leu Asp Asp Val Tyr

325 330 335 Asp Val Phe Gly Thr Leu Glu Glu Leu Glu Leu Phe Thr Asp Ala Val 340 345 350 Arg Arg Trp Asp Leu Asn Ala Val Glu Asp Leu Pro Val Tyr Met Lys 355 360 365 Leu Cys Tyr Leu Ala Leu Tyr Asn Ser Val Asn Glu Met Ala Tyr Glu 370 375 380 Thr Leu Lys Glu Lys Gly Glu Asn Val Ile Pro Tyr Leu Ala Lys Ala 385 390 395 400 Trp Tyr Asp Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser Asn 405 410 415 Ser Arg Ile Ile Pro Gly Val Glu Glu Tyr Leu Asn Asn Gly Trp Val 420 425 430 Ser Ser Ser Gly Ser Val Met Leu Ile His Ala Tyr Phe Leu Ala Ser 435 440 445 Pro Ser Ile Arg Lys Glu Glu Leu Glu Ser Leu Glu His Tyr His Asp 450 455 460 Leu Leu Arg Leu Pro Ser Leu Ile Phe Arg Leu Thr Asn Asp Ile Ala 465 470 475 480 Ser Ser Ser Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser Ile Arg 485 490 495 Cys Phe Met Gln Glu Lys Gly Ile Ser Glu Leu Glu Ala Arg Glu Cys 500 505 510 Val Lys Glu Glu Ile Asp Thr Ala Trp Lys Lys Met Asn Lys Tyr Met 515 520 525 Val Asp Arg Ser Thr Phe Asn Gln Ser Phe Val Arg Met Thr Tyr Asn 530 535 540 Leu Ala Arg Met Ala His Cys Val Tyr Gln Asp Gly Asp Ala Ile Gly 545 550 555 560 Ser Pro Asp Asp Leu Ser Trp Asn Arg Val His Ser Leu Ile Ile Lys 565 570 575 Pro Ile Ser Pro Ala Ala 580 40595PRTPopulus alba 40Met Ala Thr Glu Leu Leu Cys Leu His Arg Pro Ile Ser Leu Thr His 1 5 10 15 Lys Leu Phe Arg Asn Pro Leu Pro Lys Val Ile Gln Ala Thr Pro Leu 20 25 30 Thr Leu Lys Leu Arg Cys Ser Val Ser Thr Glu Asn Val Ser Phe Thr 35 40 45 Glu Thr Glu Thr Glu Ala Arg Arg Ser Ala Asn Tyr Glu Pro Asn Ser 50 55 60 Trp Asp Tyr Asp Tyr Leu Leu Ser Ser Asp Thr Asp Glu Ser Ile Glu 65 70 75 80 Val Tyr Lys Asp Lys Ala Lys Lys Leu Glu Ala Glu Val Arg Arg Glu 85 90 95 Ile Asn Asn Glu Lys Ala Glu Phe Leu Thr Leu Leu Glu Leu Ile Asp 100 105 110 Asn Val Gln Arg Leu Gly Leu Gly Tyr Arg Phe Glu Ser Asp Ile Arg 115 120 125 Gly Ala Leu Asp Arg Phe Val Ser Ser Gly Gly Phe Asp Ala Val Thr 130 135 140 Lys Thr Ser Leu His Gly Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln 145 150 155 160 His Gly Phe Glu Val Ser Gln Glu Ala Phe Ser Gly Phe Lys Asp Gln 165 170 175 Asn Gly Asn Phe Leu Glu Asn Leu Lys Glu Asp Ile Lys Ala Ile Leu 180 185 190 Ser Leu Tyr Glu Ala Ser Phe Leu Ala Leu Glu Gly Glu Asn Ile Leu 195 200 205 Asp Glu Ala Lys Val Phe Ala Ile Ser His Leu Lys Glu Leu Ser Glu 210 215 220 Glu Lys Ile Gly Lys Glu Leu Ala Glu Gln Val Asn His Ala Leu Glu 225 230 235 240 Leu Pro Leu His Arg Arg Thr Gln Arg Leu Glu Ala Val Trp Ser Ile 245 250 255 Glu Ala Tyr Arg Lys Lys Glu Asp Ala Asn Gln Val Leu Leu Glu Leu 260 265 270 Ala Ile Leu Asp Tyr Asn Met Ile Gln Ser Val Tyr Gln Arg Asp Leu 275 280 285 Arg Glu Thr Ser Arg Trp Trp Arg Arg Val Gly Leu Ala Thr Lys Leu 290 295 300 His Phe Ala Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Ala Val Gly 305 310 315 320 Val Ala Phe Glu Pro Gln Tyr Ser Asp Cys Arg Asn Ser Val Ala Lys 325 330 335 Met Phe Ser Phe Val Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 340 345 350 Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val Glu Arg Trp Asp 355 360 365 Val Asn Ala Ile Asn Asp Leu Pro Asp Tyr Met Lys Leu Cys Phe Leu 370 375 380 Ala Leu Tyr Asn Thr Ile Asn Glu Ile Ala Tyr Asp Asn Leu Lys Asp 385 390 395 400 Lys Gly Glu Asn Ile Leu Pro Tyr Leu Thr Lys Ala Trp Ala Asp Leu 405 410 415 Cys Asn Ala Phe Leu Gln Glu Ala Lys Trp Leu Tyr Asn Lys Ser Thr 420 425 430 Pro Thr Phe Asp Asp Tyr Phe Gly Asn Ala Trp Lys Ser Ser Ser Gly 435 440 445 Pro Leu Gln Leu Val Phe Ala Tyr Phe Ala Val Val Gln Asn Ile Lys 450 455 460 Lys Glu Glu Ile Glu Asn Leu Gln Lys Tyr His Asp Thr Ile Ser Arg 465 470 475 480 Pro Ser His Ile Phe Arg Leu Cys Asn Asp Leu Ala Ser Ala Ser Ala 485 490 495 Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser Val Ser Cys Tyr Met Arg 500 505 510 Thr Lys Gly Ile Ser Glu Glu Leu Ala Thr Glu Ser Val Met Asn Leu 515 520 525 Ile Asp Glu Thr Trp Lys Lys Met Asn Lys Glu Lys Leu Gly Gly Ser 530 535 540 Leu Phe Ala Lys Pro Phe Val Glu Thr Ala Ile Asn Leu Ala Arg Gln 545 550 555 560 Ser His Cys Thr Tyr His Asn Gly Asp Ala His Thr Ser Pro Asp Glu 565 570 575 Leu Thr Arg Lys Arg Val Leu Ser Val Ile Thr Glu Pro Ile Leu Pro 580 585 590 Phe Glu Arg 595 41595PRTPopulus canescens 41Met Ala Thr Glu Leu Leu Cys Leu His Arg Pro Ile Ser Leu Thr His 1 5 10 15 Lys Leu Phe Arg Asn Pro Leu Pro Lys Val Ile Gln Ala Thr Pro Leu 20 25 30 Thr Leu Lys Leu Arg Cys Ser Val Ser Thr Glu Asn Val Ser Phe Thr 35 40 45 Glu Thr Glu Thr Glu Ala Arg Arg Ser Ala Asn Tyr Glu Pro Asn Ser 50 55 60 Trp Asp Tyr Asp Phe Leu Leu Ser Ser Asp Thr Asp Glu Ser Ile Glu 65 70 75 80 Val Tyr Lys Asp Lys Ala Lys Lys Leu Glu Ala Glu Val Arg Arg Glu 85 90 95 Ile Asn Asn Glu Lys Ala Glu Phe Leu Thr Leu Leu Glu Leu Ile Asp 100 105 110 Asn Val Gln Arg Leu Gly Leu Gly Tyr Arg Phe Glu Ser Asp Ile Arg 115 120 125 Arg Ala Leu Asp Arg Phe Val Ser Ser Gly Gly Phe Asp Gly Val Thr 130 135 140 Lys Thr Ser Leu His Ala Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln 145 150 155 160 His Gly Phe Glu Val Ser Gln Glu Ala Phe Ser Gly Phe Lys Asp Gln 165 170 175 Asn Gly Asn Phe Leu Glu Asn Leu Lys Glu Asp Thr Lys Ala Ile Leu 180 185 190 Ser Leu Tyr Glu Ala Ser Phe Leu Ala Leu Glu Gly Glu Asn Ile Leu 195 200 205 Asp Glu Ala Arg Val Phe Ala Ile Ser His Leu Lys Glu Leu Ser Glu 210 215 220 Glu Lys Ile Gly Lys Glu Leu Ala Glu Gln Val Asn His Ala Leu Glu 225 230 235 240 Leu Pro Leu His Arg Arg Thr Gln Arg Leu Glu Ala Val Trp Ser Ile 245 250 255 Glu Ala Tyr Arg Lys Lys Glu Asp Ala Asn Gln Val Leu Leu Glu Leu 260 265 270 Ala Ile Leu Asp Tyr Asn Met Ile Gln Ser Val Tyr Gln Arg Asp Leu 275 280 285 Arg Glu Thr Ser Arg Trp Trp Arg Arg Val Gly Leu Ala Thr Lys Leu 290 295 300 His Phe Ala Lys Asp Arg Leu Ile Glu Ser Phe Tyr Trp Ala Val Gly 305 310 315 320 Val Ala Phe Glu Pro Gln Tyr Ser Asp Cys Arg Asn Ser Val Ala Lys 325 330 335 Met Phe Ser Phe Val Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 340 345 350 Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val Glu Arg Trp Asp 355 360 365 Val Asn Ala Ile Asn Asp Leu Pro Asp Tyr Met Lys Leu Cys Phe Leu 370 375 380 Ala Leu Tyr Asn Thr Ile Asn Glu Ile Ala Tyr Asp Asn Leu Lys Asp 385 390 395 400 Lys Gly Glu Asn Ile Leu Pro Tyr Leu Thr Lys Ala Trp Ala Asp Leu 405 410 415 Cys Asn Ala Phe Leu Gln Glu Ala Lys Trp Leu Tyr Asn Lys Ser Thr 420 425 430 Pro Thr Phe Asp Asp Tyr Phe Gly Asn Ala Trp Lys Ser Ser Ser Gly 435 440 445 Pro Leu Gln Leu Ile Phe Ala Tyr Phe Ala Val Val Gln Asn Ile Lys 450 455 460 Lys Glu Glu Ile Glu Asn Leu Gln Lys Tyr His Asp Ile Ile Ser Arg 465 470 475 480 Pro Ser His Ile Phe Arg Leu Cys Asn Asp Leu Ala Ser Ala Ser Ala 485 490 495 Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser Val Ser Cys Tyr Met Arg 500 505 510 Thr Lys Gly Ile Ser Glu Glu Leu Ala Thr Glu Ser Val Met Asn Leu 515 520 525 Ile Asp Glu Thr Cys Lys Lys Met Asn Lys Glu Lys Leu Gly Gly Ser 530 535 540 Leu Phe Ala Lys Pro Phe Val Glu Thr Ala Ile Asn Leu Ala Arg Gln 545 550 555 560 Ser His Cys Thr Tyr His Asn Gly Asp Ala His Thr Ser Pro Asp Glu 565 570 575 Leu Thr Arg Lys Arg Val Leu Ser Val Ile Thr Glu Pro Ile Leu Pro 580 585 590 Phe Glu Arg 595 42595PRTSalix sp. 42Met Ala Thr Glu Leu Leu Cys Leu His Arg Pro Ile Ser Leu Thr Pro 1 5 10 15 Lys Leu Phe Arg Asn Pro Leu Pro Lys Val Ile Leu Ala Thr Pro Leu 20 25 30 Thr Leu Lys Leu Arg Cys Ser Val Ser Thr Glu Asn Val Ser Phe Thr 35 40 45 Glu Thr Glu Thr Glu Thr Arg Arg Ser Ala Asn Tyr Glu Pro Asn Ser 50 55 60 Trp Asp Tyr Asp Tyr Leu Leu Ser Ser Asp Thr Asp Glu Ser Ile Glu 65 70 75 80 Val Tyr Lys Asp Lys Ala Lys Lys Leu Glu Ala Glu Val Arg Arg Glu 85 90 95 Ile Asn Asn Glu Lys Ala Glu Phe Leu Thr Leu Leu Glu Leu Ile Asp 100 105 110 Asn Val Gln Arg Leu Gly Leu Gly Tyr Arg Phe Glu Ser Asp Ile Arg 115 120 125 Arg Ala Leu Asp Arg Phe Val Ser Ser Gly Gly Phe Asp Ala Val Thr 130 135 140 Lys Thr Ser Leu His Ala Thr Ala Leu Ser Phe Arg Phe Leu Arg Gln 145 150 155 160 His Gly Phe Glu Val Ser Gln Glu Ala Phe Gly Gly Phe Lys Asp Gln 165 170 175 Asn Gly Asn Phe Leu Glu Asn Leu Lys Glu Asp Ile Lys Ala Ile Leu 180 185 190 Ser Leu Tyr Glu Ala Ser Phe Leu Ala Leu Glu Gly Glu Asn Ile Leu 195 200 205 Asp Glu Ala Lys Val Phe Ala Ile Ser His Leu Lys Glu Leu Ser Glu 210 215 220 Glu Lys Ile Gly Lys Asp Leu Ala Glu Gln Val Asn His Ala Leu Glu 225 230 235 240 Leu Pro Leu His Arg Arg Thr Gln Arg Leu Glu Ala Val Trp Ser Ile 245 250 255 Glu Ala Tyr Arg Lys Lys Glu Asp Ala Asn Gln Val Leu Leu Glu Leu 260 265 270 Ala Ile Leu Asp Tyr Asn Met Ile Gln Ser Val Tyr Gln Arg Asp Leu 275 280 285 Arg Glu Thr Ser Arg Trp Trp Arg Arg Val Gly Leu Ala Thr Lys Leu 290 295 300 His Phe Ala Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Ala Val Gly 305 310 315 320 Val Ala Phe Glu Pro Gln Tyr Ser Asp Cys Arg Asn Ser Val Ala Lys 325 330 335 Met Phe Ser Phe Val Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 340 345 350 Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val Glu Arg Trp Asp 355 360 365 Val Asn Ala Ile Asn Asp Leu Pro Asp Tyr Met Lys Leu Cys Phe Leu 370 375 380 Ala Leu Tyr Asn Thr Ile Asn Glu Ile Ala Tyr Asp Asn Leu Lys Glu 385 390 395 400 Lys Gly Glu Asn Ile Leu Pro Tyr Leu Thr Lys Ala Trp Ala Asp Leu 405 410 415 Cys Asn Ala Phe Leu Gln Glu Ala Lys Trp Leu Tyr Asn Lys Ser Thr 420 425 430 Pro Thr Phe Asp Asp Tyr Phe Gly Asn Ala Trp Lys Ser Ser Ser Gly 435 440 445 Pro Leu Gln Leu Val Phe Ala Tyr Phe Ala Val Val Gln Asn Ile Lys 450 455 460 Lys Glu Glu Ile Glu Asn Leu Gln Lys Tyr His Asp Ile Ile Ser Arg 465 470 475 480 Pro Ser His Ile Phe Arg Leu Cys Asn Asp Leu Ala Ser Ala Ser Ala 485 490 495 Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser Val Ser Cys Tyr Met Arg 500 505 510 Thr Lys Gly Ile Ser Glu Glu Leu Ala Thr Glu Ser Val Met Asn Leu 515 520 525 Ile Asp Glu Thr Trp Lys Lys Met Asn Lys Glu Lys Leu Gly Gly Ser 530 535 540 Leu Phe Pro Lys Pro Phe Val Glu Thr Ala Ile Asn Leu Ala Arg Gln 545 550 555 560 Ser His Cys Thr Tyr His Asn Gly Asp Ala His Thr Ser Pro Asp Glu 565 570 575 Leu Thr Arg Lys Arg Val Leu Ser Val Ile Thr Glu Pro Ile Leu Pro 580 585 590 Phe Glu Arg 595 43541PRTWisteria sp. 43Arg Arg Ser Gly Asn Tyr Gln Pro Asn Leu Trp Asn Phe Asp Phe Leu 1 5 10 15 Gln Ser Gln Lys Asn Asp Leu Lys Glu Glu Met Leu Gln Glu Arg Ala 20 25 30 Gly Lys Leu Glu Glu Glu Val Arg Gly Leu Ile Asn Glu Val Asp Thr 35 40 45 Glu Pro Leu Ser Leu Leu Glu Leu Ile Asp Asn Val Glu Arg Leu Gly 50 55 60 Leu Thr Tyr Lys Phe Gln Glu Asp Ile Asn Lys Ala Leu Gly Arg Ile 65 70 75 80 Val Ser Ser Asp Ile Asn Lys Ser Gly Leu His Ala Ala Ala Leu Thr 85 90 95 Phe Arg Leu Leu Arg Gln His Gly Phe Gln Ile Ser Gln Asp Val Phe 100 105 110 Glu Lys Phe Lys Asp Lys Glu Gly Arg Phe Ser Ala Glu Ile Lys Gly 115 120 125 Asp Val Gln Gly Leu Leu Ser Leu Tyr Glu Ala Ser Tyr Leu Gly Phe 130 135 140 Glu Gly Glu Asn Val Leu Glu Glu Ala Arg Ala Phe Ser Thr Thr His 145 150 155 160 Leu Arg Asn Ile Lys Gln Gly Val Ser Thr Lys Met Ala Glu Gln Ile 165 170 175 Ser His Ala Leu Glu Leu Pro Tyr His Arg Arg Leu Gln Arg Leu Glu 180 185 190 Ala Arg Arg Phe Ile Asp Lys Phe Glu Ile Lys Glu Pro Gln Asp Arg 195 200 205 Leu Leu Leu Glu Leu Ala Lys Leu Asp Phe Asn Met Val Gln Thr Leu 210 215 220 Gln Gln Lys Glu Leu Arg Asp Leu Ser Arg Trp Trp Lys Glu Ile Gly 225 230 235 240 Leu Ala Arg Lys Met Glu Phe Val Arg Asp Arg Leu Met Glu Val Tyr 245 250 255 Phe Trp Ala

Val Gly Met Ala Pro Asp Pro Leu Leu Ser Asp Cys Arg 260 265 270 Lys Ala Ile Ala Lys Met Phe Gly Leu Val Thr Ile Ile Asp Asp Val 275 280 285 Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu Gln Leu Phe Thr Asp Ala 290 295 300 Val Glu Arg Trp Asp Val Asn Ala Leu Asp Thr Leu Pro Asp Tyr Met 305 310 315 320 Lys Leu Cys Phe Leu Ala Leu Tyr Asn Thr Val Asn Asp Thr Ala Tyr 325 330 335 Ser Leu Leu Arg Glu Arg Gly Asp Asn Ser Leu Pro Tyr Leu Ala Lys 340 345 350 Ser Trp Ser Glu Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser 355 360 365 Asn Lys Lys Thr Ile Pro Glu Phe Arg Glu Tyr Leu Asp Asn Ala Ser 370 375 380 Val Ser Ser Ser Gly Gly Ala Leu Leu Thr Pro Cys Tyr Phe Ser Leu 385 390 395 400 Leu Thr Gln Asp Val Ala Val Thr Ser Gln Phe His Ser Ser Thr Ile 405 410 415 Asp Ser Leu Thr Asn Phe His Gly Val Val Arg Ser Ser Cys Thr Ile 420 425 430 Phe Arg Leu Cys Asn Asp Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg 435 440 445 Gly Glu Thr Thr Asn Ser Ile Thr Ser Tyr Met Arg Glu Lys Gly Val 450 455 460 Gly Glu Glu Glu Ala Arg Glu Glu Leu Ser Lys Leu Ile Asp Val Glu 465 470 475 480 Trp Met Lys Leu Asn Arg Glu Arg Val Leu Asp Ile Gly Pro Phe Pro 485 490 495 Lys Ala Phe Met Glu Thr Ala Val Asn Met Ala Arg Val Ser His Cys 500 505 510 Thr Tyr Gln His Gly Asp Gly Leu Gly Arg Pro Asp Asn Thr Ala Gln 515 520 525 Asn Arg Ile Lys Leu Leu Leu Leu Asn Pro Ile Pro Ser 530 535 540 44534PRTRobinia pseudoacacia 44Arg Ser Ala Asn Tyr Gln Pro Asn Leu Trp Asn Phe Glu Phe Leu Gln 1 5 10 15 Ser Gln Glu Tyr Asp Leu Met Val Glu Thr Leu Gln Glu Arg Ala Thr 20 25 30 Lys Leu Glu Glu Glu Val Arg Arg Leu Ile Asn Arg Val Asp Ile Glu 35 40 45 Pro Leu Lys Leu Leu Glu Leu Val Asp Asn Val Gln Arg Leu Gly Leu 50 55 60 Thr Tyr Lys Phe Glu Asp Asp Ile Asn Lys Ala Leu Glu Arg Ile Val 65 70 75 80 Ser Leu Asp Glu Arg Glu Lys Ser Gly Leu His Ala Thr Ala Leu Ile 85 90 95 Phe Arg Leu Leu Arg Gln His Gly Phe Glu Val Ser Gln Asp Val Phe 100 105 110 Glu Ser Thr Arg Asp Lys Glu Gly Arg Phe Lys Ala Glu Ile Lys Gly 115 120 125 Asp Val Gln Gly Leu Leu Ser Leu Tyr Glu Ala Ser Tyr Leu Gly Phe 130 135 140 Glu Gly Glu Asn Leu Leu Asp Glu Ala Arg Glu Phe Ser Met Thr His 145 150 155 160 Leu Lys Asn Leu Asn Glu Gly Val Val Thr Pro Lys Leu Ala Glu Gln 165 170 175 Ile Asn His Ala Leu Glu Leu Pro Tyr His Arg Arg Phe Gln Arg Leu 180 185 190 Glu Ala Arg Trp Phe Ile Glu Asn Tyr Glu Val Lys Glu Pro His Asp 195 200 205 Arg Leu Leu Val Glu Leu Ala Lys Leu Asp Phe Asn Met Val Gln Ser 210 215 220 Leu Gln Lys Lys Glu Val Gly Glu Leu Ser Arg Trp Trp Lys Glu Ile 225 230 235 240 Gly Leu Thr Ser Lys Leu Asp Phe Val Arg Asp Arg Leu Val Glu Val 245 250 255 Tyr Phe Trp Ala Ser Gly Met Ala Pro Asp Pro Gln Leu Ser Glu Cys 260 265 270 Arg Lys Ala Val Thr Lys Met Phe Gly Leu Val Thr Ile Ile Asp Asp 275 280 285 Val Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu Glu Leu Phe Thr Asn 290 295 300 Ala Val Glu Arg Trp Asp Val Asn Ala Val Asp Thr Leu Pro Asp Tyr 305 310 315 320 Met Lys Leu Cys Phe Phe Ala Leu Tyr Asn Thr Val Asn Asp Thr Ala 325 330 335 Tyr Asn Leu Leu Lys Glu Lys Gly Asp Asn Asn Leu Pro Tyr Leu Ala 340 345 350 Lys Ser Trp Ser Asp Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp 355 360 365 Ser Asn Asn Lys Ile Ile Pro Ser Phe Asn Lys Tyr Ile Glu Asn Ala 370 375 380 Ser Val Ser Ser Ser Gly Gly Ala Leu Leu Thr Pro Cys Tyr Phe Ser 385 390 395 400 Ile Arg Gln Asp Ile Thr Asn Gln Ala Leu Asp Ser Leu Thr Asn Tyr 405 410 415 His Gly Pro Val Arg Ser Ser Cys Ala Ile Phe Arg Leu Cys Asn Asp 420 425 430 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 435 440 445 Ile Thr Ser Tyr Met Gln Asp Asn Gly Ile Ser Glu Glu Gln Ala Arg 450 455 460 Asp Glu Leu Arg Asn Leu Ile Asp Ala Glu Trp Lys Gln Ile Asn Arg 465 470 475 480 Glu Arg Val Phe Asp Gln Thr Phe Pro Lys Ala Phe Ile Glu Thr Ala 485 490 495 Ile Asn Met Ala Arg Val Ser His Cys Thr Tyr Gln Tyr Gly Asp Gly 500 505 510 Leu Gly Arg Pro Asp Asn Thr Ala Glu Asn Arg Ile Lys Leu Leu Leu 515 520 525 Ile Asp Pro Phe Pro Ile 530 45544PRTArachis hypogaea 45Met Asn Thr Arg Arg Ser Ala Asn Tyr Gln Pro Asn Leu Trp Asp Phe 1 5 10 15 Glu Phe Leu Gln Ser Val Glu Asn Asp Leu Gln Val Glu Arg Leu Glu 20 25 30 Glu Arg Ala Arg Lys Leu Glu Glu Glu Val Arg Gly Leu Met Lys Lys 35 40 45 Val Glu Ile Glu Pro Leu Ser Leu Leu Glu Leu Met Asp Asn Val Glu 50 55 60 Arg Leu Gly Leu Thr Tyr Lys Phe Glu Glu Asp Ile Lys Ser Ala Leu 65 70 75 80 Asn Asn Arg Ile Val Pro Leu Leu His His His Thr Ile Asn Lys Tyr 85 90 95 Gly Leu His Ala Thr Ala Leu Ser Phe Arg Phe Leu Arg Gln His Ala 100 105 110 Phe His Val Ser Pro Asp Val Phe Glu Ser Phe Lys Glu Glu Gly Lys 115 120 125 Phe Lys Lys Glu Ile Ser Gly Asp Val Leu Gly Leu Leu Asn Leu Tyr 130 135 140 Glu Thr Ser Tyr Leu Gly Phe Glu Gly Glu Thr Ile Leu Asp Glu Ala 145 150 155 160 Arg Ala Phe Ser Ala Thr His Leu Lys Asn Leu Leu Gln Thr Asn Gln 165 170 175 Val Gln Asn Lys Val Met Ala Glu Lys Val Arg His Ala Leu Glu Leu 180 185 190 Pro Tyr His Arg Arg Val His Arg Leu Glu Ala Arg Trp Phe Ile Glu 195 200 205 Arg Tyr Glu Gln Lys Glu Ala His Asp Gly Ala Leu Leu Glu Leu Ala 210 215 220 Lys Leu Asp Phe Asn Met Val Gln Ser Val Met Lys Lys Glu Leu Gln 225 230 235 240 Glu Leu Ser Arg Trp Trp Arg Glu Ile Gly Leu Thr Ser Lys Leu Asp 245 250 255 Phe Val Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Ala Leu Gly Met 260 265 270 Ala Pro His Pro Gln Leu Thr Glu Cys Arg Lys Ala Val Thr Lys Met 275 280 285 Phe Gly Leu Val Thr Ile Ile Asp Asp Val Tyr Asp Val Tyr Gly Thr 290 295 300 Leu Asp Glu Leu Gln Leu Phe Thr Asp Ala Val Asp Arg Trp Asp Val 305 310 315 320 Asn Ala Val Glu Thr Leu Pro Asp Tyr Met Lys Leu Cys Tyr Leu Ala 325 330 335 Leu Tyr Asn Ser Val Asn Asp Thr Ala Tyr Ser Thr Leu Arg Glu Lys 340 345 350 Gly Asp Asn Ser Leu Pro His Leu Ala Lys Ser Trp Arg Asp Leu Cys 355 360 365 Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser Asn Asn Lys Ile Ile Pro 370 375 380 Pro Phe Asp Ala Tyr Ile Arg Asn Ala Ser Val Ser Ser Ser Gly Gly 385 390 395 400 Ala Leu Leu Ala Pro Cys Tyr Phe Ser Val Thr Gln Asp Ser Thr Ser 405 410 415 Gln Ala Ile Asp Ser Ile Thr Asn Tyr His Gly Ile Val Arg Ser Ser 420 425 430 Cys Ala Ile Phe Arg Leu Cys Asn Asp Leu Ala Thr Ser Ala Ala Glu 435 440 445 Leu Glu Arg Gly Glu Thr Thr Asn Ser Ile Thr Ser Tyr Met Thr Glu 450 455 460 Asn Gly Thr Thr Glu Glu Glu Ala Arg Glu Ser Leu Gly Lys Leu Ile 465 470 475 480 Asp Gln Glu Trp Lys Lys Met Asn Arg Asp Val Val Leu Glu Ser Ala 485 490 495 Tyr Pro Asn Val Phe Lys Glu Ile Ala Ile Asn Met Ala Arg Val Ser 500 505 510 His Cys Thr Tyr Gln Tyr Gly Asp Gly Leu Gly Arg Pro Asp Asp Thr 515 520 525 Ala Glu Asn Arg Ile Lys Leu Ser Leu Ile Glu Pro Ile Pro Ile Asn 530 535 540 46545PRTGlycine max 46Met Glu Thr Arg Arg Ser Ala Asn Tyr Gln Pro Asn Leu Trp Asn Phe 1 5 10 15 Glu Phe Leu Pro Pro Ser Leu Glu Asn Asp His Lys Val Glu Lys Leu 20 25 30 Glu Glu Arg Ala Lys Lys Val Glu Glu Glu Val Arg Lys Val Ile Asn 35 40 45 Gly Ile Asp Thr Lys Pro Leu Leu Leu Glu Leu Ile Asp Asp Val Gln 50 55 60 His Leu Gly Leu Thr Tyr Lys Phe Glu Lys Asp Ile Ile Lys Ala Leu 65 70 75 80 Glu Lys Ile Val Ser Leu Asp Glu Asn Glu Glu His Lys Ser Glu Leu 85 90 95 Tyr Tyr Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln His Gly Phe Glu 100 105 110 Val Ser Gln Asp Val Phe Lys Arg Phe Lys Asp Lys Glu Gly Gly Phe 115 120 125 Ser Gly Glu Leu Lys Gly Asp Val Gln Gly Leu Leu Ser Leu Tyr Glu 130 135 140 Ala Ser Tyr Leu Gly Phe Glu Gly Asp Asn Leu Leu Asp Glu Ala Arg 145 150 155 160 Ala Phe Ser Thr Thr His Leu Lys Asn Asn Leu Lys Gln Gly Ile Asn 165 170 175 Thr Lys Glu Ala Glu Gln Val Asn His Ala Leu Glu Leu Pro Tyr His 180 185 190 Arg Arg Leu Gln Arg Leu Glu Ala Arg Trp Tyr Leu Glu Lys Tyr Glu 195 200 205 Pro Lys Glu Pro His His Gln Leu Leu Leu Glu Leu Ala Lys Leu Asp 210 215 220 Phe Asn Met Val Gln Leu Leu His Gln Lys Glu Leu Gln Glu Leu Ser 225 230 235 240 Arg Trp Trp Ser Glu Met Gly Leu Ala Ser Lys Leu Glu Phe Ala Arg 245 250 255 Asp Arg Leu Met Glu Val Tyr Phe Trp Ala Leu Gly Met Ala Pro Asp 260 265 270 Pro Gln Phe Arg Glu Cys Arg Lys Ala Val Thr Lys Met Phe Gly Leu 275 280 285 Val Thr Ile Ile Asp Asp Val Tyr Asp Ile Tyr Gly Thr Leu Asp Glu 290 295 300 Leu Gln Leu Phe Thr Asp Ala Val Glu Arg Trp Asp Val Asn Val Val 305 310 315 320 Asn Thr Leu Pro Asp Tyr Met Lys Leu Cys Tyr Leu Ala Leu Tyr Asn 325 330 335 Thr Val Asn Asp Thr Ala Tyr Ser Ile Leu Lys Glu Lys Gly Arg Asn 340 345 350 Asn Leu Ser Tyr Leu Lys Lys Ser Trp Cys Glu Leu Cys Lys Ala Phe 355 360 365 Leu Gln Glu Ala Lys Trp Ser Asn Asn Lys Ile Val Pro Ala Phe Ser 370 375 380 Lys Tyr Leu Glu Asn Ala Ser Val Ser Ser Ser Gly Val Ala Leu Leu 385 390 395 400 Ala Pro Ser Tyr Phe Ser Val Cys Gln Glu Gln Asp Ile Ser Phe Ser 405 410 415 Asp Lys Thr Leu His Tyr Leu Thr Asn Phe Gly Gly Leu Val Arg Ser 420 425 430 Ser Cys Thr Ile Phe Arg Leu Cys Asn Asp Leu Thr Thr Ser Ala Ala 435 440 445 Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser Ile Met Ser Tyr Met His 450 455 460 Glu Asn Gly Thr Ser Glu Glu His Ala Cys Glu Glu Leu Arg Asn Leu 465 470 475 480 Ile Asp Ile Glu Trp Lys Lys Met Asn Arg Gln Arg Val Ser Asp Ser 485 490 495 Thr Leu Pro Lys Ala Phe Arg Glu Ile Ala Met Asn Met Ala Arg Val 500 505 510 Ser His Asn Thr Tyr Gln Tyr Gly Asp Gly Leu Gly Arg Pro Asp Tyr 515 520 525 Asn Ile Glu Asn Arg Ile Lys Phe Leu Leu Ile Asp Pro Val Pro Ile 530 535 540 Asn 545 47608PRTPueraria montana var. lobata 47Met Ala Thr Asn Leu Leu Cys Leu Ser Asn Lys Leu Ser Ser Pro Thr 1 5 10 15 Pro Thr Pro Ser Thr Arg Phe Pro Gln Ser Lys Asn Phe Ile Thr Gln 20 25 30 Lys Thr Ser Leu Ala Asn Pro Lys Pro Trp Arg Val Ile Cys Ala Thr 35 40 45 Ser Ser Gln Phe Thr Gln Ile Thr Glu His Asn Ser Arg Arg Ser Ala 50 55 60 Asn Tyr Gln Pro Asn Leu Trp Asn Phe Glu Phe Leu Gln Ser Leu Glu 65 70 75 80 Asn Asp Leu Lys Val Glu Lys Leu Glu Glu Lys Ala Thr Lys Leu Glu 85 90 95 Glu Glu Val Arg Cys Met Ile Asn Arg Val Asp Thr Gln Pro Leu Ser 100 105 110 Leu Leu Glu Leu Ile Asp Asp Val Gln Arg Leu Gly Leu Thr Tyr Lys 115 120 125 Phe Glu Lys Asp Ile Ile Lys Ala Leu Glu Asn Ile Val Leu Leu Asp 130 135 140 Glu Asn Lys Lys Asn Lys Ser Asp Leu His Ala Thr Ala Leu Ser Phe 145 150 155 160 Arg Leu Leu Arg Gln His Gly Phe Glu Val Ser Gln Asp Val Phe Glu 165 170 175 Arg Phe Lys Asp Lys Glu Gly Gly Phe Ser Gly Glu Leu Lys Gly Asp 180 185 190 Val Gln Gly Leu Leu Ser Leu Tyr Glu Ala Ser Tyr Leu Gly Phe Glu 195 200 205 Gly Glu Asn Leu Leu Glu Glu Ala Arg Thr Phe Ser Ile Thr His Leu 210 215 220 Lys Asn Asn Leu Lys Glu Gly Ile Asn Thr Lys Val Ala Glu Gln Val 225 230 235 240 Ser His Ala Leu Glu Leu Pro Tyr His Gln Arg Leu His Arg Leu Glu 245 250 255 Ala Arg Trp Phe Leu Asp Lys Tyr Glu Pro Lys Glu Pro His His Gln 260 265 270 Leu Leu Leu Glu Leu Ala Lys Leu Asp Phe Asn Met Val Gln Thr Leu 275 280 285 His Gln Lys Glu Leu Gln Asp Leu Ser Arg Trp Trp Thr Glu Met Gly 290 295 300 Leu Ala Ser Lys Leu Asp Phe Val Arg Asp Arg Leu Met Glu Val Tyr 305 310 315 320 Phe Trp Ala Leu Gly Met Ala Pro Asp Pro Gln Phe Gly Glu Cys Arg 325 330 335 Lys Ala Val Thr Lys Met Phe Gly Leu Val Thr Ile Ile Asp Asp Val 340 345 350 Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu Gln Leu Phe Thr Asp Ala 355 360 365 Val Glu Arg Trp Asp Val Asn Ala Ile Asn Thr Leu Pro Asp Tyr Met 370 375 380 Lys Leu Cys Phe Leu

Ala Leu Tyr Asn Thr Val Asn Asp Thr Ser Tyr 385 390 395 400 Ser Ile Leu Lys Glu Lys Gly His Asn Asn Leu Ser Tyr Leu Thr Lys 405 410 415 Ser Trp Arg Glu Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser 420 425 430 Asn Asn Lys Ile Ile Pro Ala Phe Ser Lys Tyr Leu Glu Asn Ala Ser 435 440 445 Val Ser Ser Ser Gly Val Ala Leu Leu Ala Pro Ser Tyr Phe Ser Val 450 455 460 Cys Gln Gln Gln Glu Asp Ile Ser Asp His Ala Leu Arg Ser Leu Thr 465 470 475 480 Asp Phe His Gly Leu Val Arg Ser Ser Cys Val Ile Phe Arg Leu Cys 485 490 495 Asn Asp Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr 500 505 510 Asn Ser Ile Ile Ser Tyr Met His Glu Asn Asp Gly Thr Ser Glu Glu 515 520 525 Gln Ala Arg Glu Glu Leu Arg Lys Leu Ile Asp Ala Glu Trp Lys Lys 530 535 540 Met Asn Arg Glu Arg Val Ser Asp Ser Thr Leu Leu Pro Lys Ala Phe 545 550 555 560 Met Glu Ile Ala Val Asn Met Ala Arg Val Ser His Cys Thr Tyr Gln 565 570 575 Tyr Gly Asp Gly Leu Gly Arg Pro Asp Tyr Ala Thr Glu Asn Arg Ile 580 585 590 Lys Leu Leu Leu Ile Asp Pro Phe Pro Ile Asn Gln Leu Met Tyr Val 595 600 605 48600PRTMucuna pruriens 48Met Ala Thr Lys Val Leu Cys Leu Ser Asn Gln Phe Leu Tyr Pro Thr 1 5 10 15 Pro Thr Leu Thr Ser Thr Arg Phe Leu Gln Thr Glu Asn Phe Thr Gln 20 25 30 Lys Thr Ser Leu Ile Asn Pro Lys Pro Tyr Pro Leu Phe Cys Val Val 35 40 45 Thr Ser Gln Phe Ser Gln Ile Thr Glu Asp Asn Thr Arg Arg Ser Ala 50 55 60 Asn Tyr His Pro Asn Leu Trp Asn Phe Glu Phe Leu Gln Ser Leu Glu 65 70 75 80 Asn Asp Pro Lys Ile Glu Lys Leu Glu Glu Lys Ala Thr Lys Leu Val 85 90 95 Glu Glu Val Arg His Met Met Asn Lys Ala Glu Thr Glu Pro Leu Ser 100 105 110 Leu Leu Glu Leu Ile Asp Asp Val Gln Arg Leu Gly Leu Thr Tyr Lys 115 120 125 Phe Glu Lys Asp Ile Ile Asn Ala Leu Glu Lys Thr Ile Ser Leu Asp 130 135 140 Glu Asn Gln Lys His Ile Ser Gly Leu His Ala Thr Ser Leu Ser Phe 145 150 155 160 Arg Leu Leu Arg Gln His Gly Phe Glu Val Ser Gln Asp Val Phe Lys 165 170 175 Lys Phe Lys Asp Glu Asp Gly Gly Phe Ser Ala Glu Leu Lys Gly Asp 180 185 190 Val Gln Gly Leu Leu Ser Leu Tyr Glu Ala Ser Tyr Leu Gly Phe Glu 195 200 205 Gly Glu Asn Leu Leu Asp Glu Ala Arg Glu Phe Ser Ile Glu His Leu 210 215 220 Lys Asn Asn Leu Asn Lys Gly Ile Thr Thr Lys Val Ala Glu Gln Val 225 230 235 240 Ser His Ala Leu Glu Leu Pro Tyr His Arg Arg Ile His Arg Leu Glu 245 250 255 Ala Arg Trp Phe Leu Asp Lys Tyr Glu Pro Lys Glu Ser Gln His Lys 260 265 270 Leu Leu Leu Glu Leu Ala Lys Leu Asp Phe Asn Met Val Gln Ser Leu 275 280 285 His Gln Lys Glu Leu Arg Glu Leu Ser Met Trp Trp Arg Glu Ile Gly 290 295 300 Leu Thr Ser Lys Leu Asp Phe Val Arg Asp Arg Leu Met Glu Val Tyr 305 310 315 320 Phe Trp Ala Leu Gly Met Ala Pro Asp Pro Gln Phe Ser Glu Cys Arg 325 330 335 Lys Ala Val Thr Lys Met Phe Gly Leu Val Thr Ile Ile Asp Asp Val 340 345 350 Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu Gln Leu Phe Thr Asp Ala 355 360 365 Val Glu Arg Trp Asp Val Asn Ala Ile Asn Thr Leu Pro Asp Tyr Met 370 375 380 Lys Leu Cys Phe Leu Ala Leu Tyr Asn Thr Val Asn Asp Thr Thr Tyr 385 390 395 400 Ser Ile Leu Lys Glu Lys Gly His Asn Asn Ile Ser Tyr Leu Thr Lys 405 410 415 Ser Trp Cys Glu Leu Cys Lys Ala Phe Leu Gln Glu Ala Lys Trp Ser 420 425 430 Asn Asn Lys Ile Ile Pro Thr Phe Asn Lys Tyr Leu Arg Asn Ala Ser 435 440 445 Val Ser Ser Ser Gly Val Ala Leu Leu Ala Pro Ser Phe Phe Leu Val 450 455 460 Cys Gln Glu Gln Asp Ile Ser Glu Gln Ala Leu His Ser Leu Ile Asn 465 470 475 480 Phe His Gly Leu Val Arg Ser Ser Cys Val Ile Phe Arg Leu Cys Asn 485 490 495 Asp Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn 500 505 510 Ser Ile Thr Ser Tyr Met His Glu Asn Gly Thr Ser Glu Glu Gln Ala 515 520 525 Arg Gln Glu Leu Arg Ile Leu Ile Asp Ala Glu Trp Lys Asn Met Asn 530 535 540 Gln Glu Arg Tyr Leu Asp Ser Thr Leu Pro Asp Ala Phe Met Glu Ile 545 550 555 560 Thr Ile Asn Leu Ala Arg Val Ser His Cys Thr Tyr Gln Tyr Gly Asp 565 570 575 Gly Leu Gly Arg Pro Asp Tyr Thr Thr Lys Asn Arg Ile Lys Leu Leu 580 585 590 Leu Ile Asp Pro Leu Pro Ile Asn 595 600 49545PRTGlycine max 49Met Glu Thr Arg Arg Ser Ala Asn Tyr Gln Pro Asn Leu Trp Asn Phe 1 5 10 15 Glu Phe Leu Pro Pro Ser Leu Glu Asn Asp His Lys Val Glu Lys Leu 20 25 30 Glu Glu Arg Ala Arg Lys Val Glu Glu Glu Val Arg Arg Met Ile Asn 35 40 45 Gly Ala Asp Thr Glu Ala Leu Arg Leu Leu Glu Leu Ile Asp Glu Ile 50 55 60 Gln Arg Leu Gly Leu Thr Tyr Lys Phe Glu Lys Asp Ile Phe Lys Ala 65 70 75 80 Leu Glu Lys Thr Ile Ser Leu Asp Glu Asn Glu Lys His Ile Ser Gly 85 90 95 Leu His Ala Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln His Gly Phe 100 105 110 Glu Val Ser Gln Asp Val Phe Lys Arg Phe Lys Asp Lys Glu Gly Gly 115 120 125 Phe Ile Asn Glu Leu Lys Gly Asp Met Gln Gly Leu Leu Ser Leu Tyr 130 135 140 Glu Ala Ser Tyr Leu Gly Phe Glu Gly Glu Thr Leu Leu Asp Glu Ala 145 150 155 160 Arg Ala Tyr Ser Ile Thr His Leu Lys Asn Asn Leu Lys Val Gly Val 165 170 175 Asn Thr Glu Val Lys Glu Gln Val Ser His Ala Leu Glu Leu Pro Tyr 180 185 190 His Arg Gly Leu Asn Arg Leu Glu Ala Arg Trp Phe Leu Glu Lys Tyr 195 200 205 Glu Pro Asn Glu Ser His His His Val Leu Leu Glu Leu Ala Lys Ile 210 215 220 Asp Phe Asn Leu Val Gln Val Met Tyr Gln Lys Glu Leu Arg Glu Leu 225 230 235 240 Ser Arg Trp Trp Ser Glu Met Gly Leu Thr Ser Lys Leu Lys Phe Val 245 250 255 Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Val Leu Gly Met Ala Pro 260 265 270 Arg Pro Gln Phe Ser Glu Cys Arg Lys Ala Val Thr Lys Thr Phe Ala 275 280 285 Leu Ile Gly Ile Ile Asp Asp Val Tyr Asp Val Tyr Gly Thr Leu Asp 290 295 300 Glu Leu Gln Leu Phe Thr Asp Ala Ile Glu Arg Trp Asp Val Asn Ala 305 310 315 320 Met Asn Thr Leu Pro Asp Tyr Met Lys Leu Cys Tyr Leu Ala Val Tyr 325 330 335 Asn Thr Val Asn Asp Thr Cys Tyr Ser Thr Leu Lys Ala Lys Gly His 340 345 350 Asn Asn Met Ser Tyr Leu Thr Lys Ser Trp Cys Glu Leu Cys Lys Ala 355 360 365 Phe Leu Gln Glu Ala Lys Trp Ser Asn Asn Lys Ile Val Pro Thr Phe 370 375 380 Ser Lys Tyr Leu Glu Asn Ala Ser Val Ser Ser Ser Gly Met Ala Leu 385 390 395 400 Leu Thr Ala Ser Tyr Phe Ser Val Cys Gln Gln Gln Asp Ile Ser Asn 405 410 415 Gln Gln Ala Leu Cys Ser Leu Thr Asn Phe Gln Gly Leu Val Arg Ser 420 425 430 Ser Ser Asn Ile Phe Arg Leu Cys Asn Asp Leu Ala Thr Ser Ala Ala 435 440 445 Glu Leu Glu Thr Gly Glu Thr Ala Asn Ser Ile Thr Cys Tyr Met His 450 455 460 Glu Lys Asp Thr Ser Glu Glu Gln Ala Arg Glu Glu Leu Thr Asn Leu 465 470 475 480 Ile Asp Ala Glu Trp Lys Lys Met Asn Arg Glu Phe Val Ser Asn Ser 485 490 495 Thr Leu Pro Lys Ala Phe Lys Glu Ile Ala Ile Asn Met Ala Arg Val 500 505 510 Ser His Cys Met Tyr Gln Tyr Glu Asp Gly Leu Gly Arg Pro Gly Tyr 515 520 525 Thr Thr Glu Asn Lys Ile Lys Leu Leu Leu Ile Asp Pro Val Pro Ile 530 535 540 Asn 545 50598PRTCajanus cajan 50Met Ala Thr His His Leu Leu Cys Leu Ser Asn Pro Phe Ser Ser Pro 1 5 10 15 Ser Pro Thr Leu Ser Thr Ala Thr Arg Ser Phe Pro Leu Thr Asn Asn 20 25 30 Phe Asn His Lys Thr Ser Leu Ala Asn Ser Lys Pro Cys Pro Phe Ile 35 40 45 Cys Ser Gln Ile Thr His His His His Thr Arg Arg Ser Ala Asn Tyr 50 55 60 Gln Pro Asn Leu Trp Asn Phe Glu Phe Leu Gln Ser Leu Gln Asn His 65 70 75 80 His Gln Val Phe Thr Met Phe Arg Arg Lys Leu Glu Lys Glu Val Arg 85 90 95 Cys Met Met Asn Lys Ala Asp Ala Glu Ala Leu Ser Leu Leu Glu Leu 100 105 110 Ile Asp Asp Val Gln Arg Leu Gly Leu Thr Tyr Arg Phe Glu Lys Asp 115 120 125 Ile Ile Lys Val Leu Glu Lys Ile Val Ser Leu Asp Glu Ile Glu Lys 130 135 140 His Gln Ser Gly Leu His Ala Thr Ala Leu Thr Phe Arg Leu Leu Arg 145 150 155 160 Gln His Gly Phe His Gln Val Ser Gln Asp Met Phe Lys Arg Phe Lys 165 170 175 Asp Lys Glu Gly Gly Phe Asn Asp Glu Leu Lys Gly Asp Val Gln Gly 180 185 190 Leu Leu Ser Leu Tyr Glu Ala Ser Tyr Leu Gly Phe Glu Gly Glu Tyr 195 200 205 Leu Leu Asp Glu Ala Arg Ala Phe Ser Ile Thr His Leu Asn Asn Ser 210 215 220 Leu Lys Gln Gly Ile Asn Thr Lys Leu Ala Glu Gln Val Ser His Ala 225 230 235 240 Leu Gln Leu Pro His His Arg Arg Leu His Arg Leu Glu Ala Arg Trp 245 250 255 Gln Leu Asp Lys Tyr Glu Pro Lys Glu Pro His His His Leu Leu Leu 260 265 270 His Leu Ala Lys Leu Asp Phe Asn Ile Leu Gln Ser Leu Tyr Gln Asn 275 280 285 Glu Leu Arg Glu Leu Ser Arg Trp Trp Arg Glu Met Gly Leu Thr Ser 290 295 300 Lys Leu Glu Phe Val Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Ala 305 310 315 320 Leu Gly Met Ala Pro His Pro Glu Phe Ser Glu Cys Arg Lys Ala Ile 325 330 335 Thr Lys Met Phe Gly Leu Val Thr Ile Ile Asp Asp Val Tyr Asp Val 340 345 350 Tyr Gly Thr Leu Asp Glu Leu Gln Leu Phe Thr Asp Ala Val Glu Arg 355 360 365 Trp Asp Val Asn Val Val Asn Thr Leu Pro Tyr Tyr Met Lys Leu Cys 370 375 380 Tyr Leu Ala Leu Tyr Asn Thr Val Asn Glu Thr Ser Tyr Ser Ile Leu 385 390 395 400 Lys Glu Asn Gly His Asn Ser Leu Ser Tyr Leu Ala Lys Ser Trp Cys 405 410 415 Glu Leu Cys Lys Ala Phe Leu Glu Glu Ala Lys Trp Ser Lys Lys Lys 420 425 430 Val Ile Pro Ala Leu Asn Arg Tyr Leu Glu Asn Ala Trp Val Ser Ser 435 440 445 Ser Gly Val Ala Leu Leu Ala Pro Cys Tyr Phe Ser Val Cys Lys Glu 450 455 460 Glu Asp Lys Ile Ser Asp Glu Ala Leu His Ser Leu Thr Asn Phe His 465 470 475 480 Gly Leu Val Arg Ser Ser Cys Ala Ile Phe Arg Leu Tyr Asn Asp Leu 485 490 495 Ala Thr Ser Ala Ala Glu Leu Glu Arg Asp Glu Thr Thr Asn Ser Met 500 505 510 Thr Cys Tyr Met His Glu Asn Gly Ser Cys Glu Glu Gln Ala Arg Glu 515 520 525 Glu Leu Arg Lys Met Ile Glu Val Glu Trp Lys Lys Met Asn Gln Glu 530 535 540 Gly Val Leu Asp Cys Thr Leu Pro Thr Ala Phe Lys Glu Ile Ala Met 545 550 555 560 Asn Met Ala Arg Val Ser His Cys Thr Tyr Gln His Gly Asp Gly Leu 565 570 575 Gly Arg Pro Asp Tyr Thr Thr Gln Asn Arg Ile Lys Leu Leu Leu Ile 580 585 590 Asp Pro Leu Pro Ile Asn 595 51613PRTHumulus lupulus 51Met Gln Cys Met Ala Val His Gln Phe Ala Pro Leu Leu Ser Leu Leu 1 5 10 15 Asn Cys Ser Arg Ile Ser Ser Asp Phe Gly Arg Leu Phe Thr Pro Lys 20 25 30 Thr Ser Thr Lys Ser Arg Ser Ser Thr Cys His Pro Ile Gln Cys Thr 35 40 45 Val Val Asn Asn Thr Asp Arg Arg Ser Ala Asn Tyr Glu Pro Ser Ile 50 55 60 Trp Ser Phe Asp Tyr Ile Gln Ser Leu Thr Ser Gln Tyr Lys Gly Lys 65 70 75 80 Ser Tyr Ser Ser Arg Leu Asn Glu Leu Lys Lys Glu Val Lys Met Met 85 90 95 Glu Asp Gly Thr Lys Glu Cys Leu Ala Gln Leu Asp Leu Ile Asp Thr 100 105 110 Leu Gln Arg Leu Gly Ile Ser Tyr His Phe Glu Asp Glu Ile Asn Thr 115 120 125 Ile Leu Lys Arg Lys Tyr Ile Asn Ile Gln Asn Asn Ile Asn His Asn 130 135 140 Tyr Asn Leu Tyr Ser Thr Ala Leu Gln Phe Arg Leu Leu Arg Gln His 145 150 155 160 Gly Tyr Leu Val Thr Gln Glu Val Phe Asn Ala Phe Lys Asp Glu Thr 165 170 175 Gly Lys Phe Lys Thr Tyr Leu Ser Asp Asp Ile Met Gly Val Leu Ser 180 185 190 Leu Tyr Glu Ala Ser Phe Tyr Ala Met Lys His Glu Asn Val Leu Glu 195 200 205 Glu Ala Arg Val Phe Ser Thr Glu Cys Leu Lys Glu Tyr Met Met Lys 210 215 220 Met Glu Gln Asn Lys Val Leu Leu Asp His Asp Leu Asp His Asn Asp 225 230 235 240 Asn Phe Asn Val Asn His His Val Leu Ile Ile Asn His Ala Leu Glu 245 250 255 Leu Pro Leu His Trp Arg Ile Thr Arg Ser Glu Ala Arg Trp Phe Ile 260 265 270 Asp Val Tyr Glu Lys Lys Gln Asp Met Asp Ser Thr Leu Leu Glu Phe 275 280 285 Ala Lys Leu Asp Phe Asn Met Val Gln Ser Thr His Gln Glu Asp Leu 290 295 300 Lys His Leu Ser Arg Trp Trp Arg His Ser Lys Leu Gly Glu Lys Leu 305 310 315 320 Asn Phe Ala Arg Asp Arg Leu Met Glu Ala Phe Leu Trp Glu Val Gly 325

330 335 Leu Lys Phe Glu Pro Glu Phe Ser Tyr Phe Lys Arg Ile Ser Ala Arg 340 345 350 Leu Phe Val Leu Ile Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 355 360 365 Thr Leu Glu Glu Leu Glu Leu Phe Thr Lys Ala Val Glu Arg Trp Asp 370 375 380 Val Asn Ala Ile Asn Glu Leu Pro Glu Tyr Met Lys Met Pro Phe Leu 385 390 395 400 Val Leu His Asn Thr Ile Asn Glu Met Ala Phe Asp Val Leu Gly Asp 405 410 415 Gln Asn Phe Leu Asn Ile Glu Tyr Leu Lys Lys Ser Leu Val Asp Leu 420 425 430 Cys Lys Cys Tyr Leu Gln Glu Ala Lys Trp Tyr Tyr Ser Gly Tyr Gln 435 440 445 Pro Thr Leu Gln Glu Tyr Ile Glu Met Ala Trp Leu Ser Ile Gly Gly 450 455 460 Pro Val Ile Leu Val His Ala Tyr Phe Cys Phe Thr Asn Pro Ile Thr 465 470 475 480 Lys Glu Ser Met Lys Phe Phe Thr Glu Gly Tyr Pro Asn Ile Ile Gln 485 490 495 Gln Ser Cys Leu Ile Val Arg Leu Ala Asp Asp Phe Gly Thr Phe Ser 500 505 510 Asp Glu Leu Asn Arg Gly Asp Val Pro Lys Ser Ile Gln Cys Tyr Met 515 520 525 Tyr Asp Thr Gly Ala Ser Glu Asp Glu Ala Arg Glu His Ile Lys Phe 530 535 540 Leu Ile Cys Glu Thr Trp Lys Asp Met Asn Lys Asn Asp Glu Asp Asn 545 550 555 560 Ser Cys Phe Ser Glu Thr Phe Val Glu Val Cys Lys Asn Leu Ala Arg 565 570 575 Thr Ala Leu Phe Met Tyr Gln Tyr Gly Asp Gly His Ala Ser Gln Asn 580 585 590 Cys Leu Ser Lys Glu Arg Ile Phe Ala Leu Ile Ile Asn Pro Ile Asn 595 600 605 Phe His Glu Arg Lys 610 5256PRTQuercus petraea 52Arg Asp Arg Leu Met Glu Cys Phe Phe Phe Phe Ser Phe Ile Thr Val 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Gly Thr Ser Thr Ala Glu Leu Glu Arg Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly His 50 55 5356PRTPopulus alba 53Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 5456PRTPopulus canescens 54Lys Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 5556PRTSalix sp. 55Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 5656PRTMelaleuca alternifolia 56Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Phe Ser Leu Ile Leu Val 1 5 10 15 Leu Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ala Glu Leu Gly Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Asp Gly Asp Ala Ile 50 55 5756PRTEucalyptus globulus 57Arg Asp Arg Leu Ile Glu Cys Phe Phe Trp Phe Ala Leu Ile Leu Val 1 5 10 15 Leu Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Thr Asn Asp 20 25 30 Ile Ala Ser Ser Ser Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Asp Gly Asp Ala Ile 50 55 5856PRTWisteria sp. 58Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly Leu 50 55 5956PRTRobinia pseudoacacia 59Arg Asp Arg Leu Val Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 6056PRTArachis hypogaea 60Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 6156PRTGlycine max 61Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Thr Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 6256PRTPueraria montana var. lobata 62Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 6356PRTMucuna pruriens 63Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 6456PRTGlycine max 64Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Ala Leu Ile Gly Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Thr Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Glu Asp Gly Leu 50 55 6556PRTCajanus cajan 65Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Tyr Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Asp Glu Thr Thr Asn Ser 35 40 45 Met Tyr Gln His Gly Asp Gly Leu 50 55 6656PRTHumulus lupulus 66Arg Asp Arg Leu Met Glu Ala Phe Leu Trp Phe Val Leu Ile Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Tyr Ser Ile Gly Val Arg Leu Ala Asp Asp 20 25 30 Phe Gly Thr Phe Ser Asp Glu Leu Asn Arg Gly Asp Val Pro Lys Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly His 50 55 6756PRTMedicago truncatula 67Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Cys Ser Leu Ile Thr Leu 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ala Glu Leu Glu Arg Gly Glu Gly Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly His 50 55 6856PRTMedicago sativa 68Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Ser Ser Leu Ile Thr Leu 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ala Glu Leu Glu Arg Gly Glu Gly Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly His 50 55 6956PRTLotus japonicus 69Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Thr Ser Leu Ile Thr Thr 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Gly Thr Ser Thr Ala Glu Leu Gln Arg Gly Glu Val Ala Asn Ser 35 40 45 Ile Tyr Gln Thr Gly Asp Gly His 50 55 7056PRTPetraea sp. 70Arg Asp Arg Leu Met Glu Cys Phe Phe Phe Phe Ser Phe Ile Thr Val 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Gly Thr Ser Thr Ala Glu Leu Glu Arg Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly His 50 55 7156PRTFragaria vesca 71Lys Asp Arg Leu Met Glu Cys Phe Phe Trp Ser Ala Leu Ile Ser Thr 1 5 10 15 Val Asp Asp Val Tyr Asp Phe Ser Ala Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Ala Thr Ser Glu Ala Glu Leu Glu Arg Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Ile 50 55 7256PRTMorus notabilis 72Arg Asp Arg Leu Met Glu Ser Phe Phe Trp Val Ala Phe Ile Thr Val 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Val Asn Asp 20 25 30 Leu Ala Thr Ser Thr Ala Glu Leu Glu Arg Gly Glu Thr Asn Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly His 50 55 7356PRTElaeocarpus sp. 73Arg Asp Arg Leu Met Glu Ser Phe Phe Trp Phe Ala Leu Ile Thr Thr 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Gly Thr Ser Ser Ala Glu Leu Glu Arg Gly Glu Leu Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Ala His 50 55 7456PRTElaeocarpus photiniifolius 74Arg Asp Arg Leu Met Glu Ser Phe Phe Trp Phe Ala Leu Ile Thr Thr 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Gly Thr Ser Ser Ala Glu Leu Glu Arg Gly Glu Leu Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Ala His 50 55 7556PRTPopulus trichocarpa 75Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Thr Ser Phe Ile Thr Thr 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Val Ser Phe Arg Leu Ser Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly His 50 55 7656PRTVitis vinifera 76Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Thr Ser Phe Ile Thr Thr 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Val Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Lys Ala Glu Leu Glu Arg Gly Glu Ser Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Ser His 50 55 7756PRTPopulus alba 77Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 7856PRTPopulus canescens 78Lys Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 7956PRTSalix sp. 79Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Phe Ser Phe Val Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Ser Ala Ser Ala Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser 35 40 45 Val Tyr His Asn Gly Asp Ala His 50 55 8056PRTMalternifolia sp. 80Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Phe Ser Leu Ile Leu Val 1 5 10 15 Leu Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ala Glu Leu Gly Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Asp Gly Asp Ala Ile 50 55 8156PRTEglobulus sp. 81Arg Asp Arg Leu Ile Glu Cys Phe Phe Trp Phe Ala Leu Ile Leu Val 1 5 10 15 Leu Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Thr Asn Asp 20 25 30 Ile Ala Ser Ser Ser Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Asp Gly Asp Ala Ile 50 55 8256PRTEucalyptus grandis 82Arg Asp Arg Leu Thr Glu Cys Phe Phe Trp Thr Ser Leu Ile Thr Ile 1 5 10 15 Met Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Thr Asn Asp 20 25 30 Leu Val Thr Leu Ser Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Asp Gly Asp Ala His 50 55 8356PRTWisteria sp. 83Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly Leu 50 55 8456PRTRobinia pseudoacacia 84Arg Asp Arg Leu Val Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 8556PRTArachis hypogaea 85Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu

50 55 8656PRTGlycine max 86Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Thr Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 8756PRTPueraria montana var. lobata 87Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 8856PRTMucuna pruriens 88Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Gly Glu Thr Thr Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Leu 50 55 8956PRTGlycine max 89Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Ala Leu Ile Gly Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Thr Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Glu Asp Gly Leu 50 55 9056PRTCajanus cajan 90Arg Asp Arg Leu Met Glu Val Tyr Phe Trp Phe Gly Leu Val Thr Ile 1 5 10 15 Ile Asp Asp Val Tyr Asp Phe Ser Ser Ser Phe Arg Leu Tyr Asn Asp 20 25 30 Leu Ala Thr Ser Ala Ala Glu Leu Glu Arg Asp Glu Thr Thr Asn Ser 35 40 45 Met Tyr Gln His Gly Asp Gly Leu 50 55 9156PRTMangifera indica 91Arg Asp Arg Leu Met Glu Cys Tyr Phe Trp Phe Ala Phe Val Thr Thr 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Cys Asn Asp 20 25 30 Leu Ser Thr Ser Lys Asp Glu Leu Glu Arg Gly Glu Thr Ala Ser Ser 35 40 45 Ile Tyr Gln His Gly Asp Gly His 50 55 9256PRTIpomoea batatas 92Arg Asp Arg Leu Met Glu Ser Phe Phe Trp Phe Lys Leu Val Thr Val 1 5 10 15 Leu Asp Asp Val Tyr Asp Phe Ser Val Ser Phe Arg Leu Ala Asn Asp 20 25 30 Leu Ser Ser Ser Lys Ala Glu Ile Glu Arg Gly Glu Thr Ala Asn Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Ala His 50 55 9356PRTSesamum indicum 93Arg Asp Arg Leu Met Glu Ser Phe Phe Trp Val Asn Leu Ile Thr Val 1 5 10 15 Leu Asp Asp Ile Tyr Asp Phe Ser Ser Ser Phe Arg Leu Ala Asn Asp 20 25 30 Leu Ser Ser Ser Lys Asp Asp Val Gly Arg Gly Glu Thr Ala Lys Ala 35 40 45 Val Tyr Gln His Gly Asp Ala His 50 55 9456PRTHumulus lupulus 94Arg Asp Arg Leu Met Glu Ala Phe Leu Trp Phe Val Leu Ile Thr Ile 1 5 10 15 Ile Asp Asp Ile Tyr Asp Tyr Ser Ile Gly Val Arg Leu Ala Asp Asp 20 25 30 Phe Gly Thr Phe Ser Asp Glu Leu Asn Arg Gly Asp Val Pro Lys Ser 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly His 50 55 9556PRTMatricaria recutita 95Arg Asp Arg Leu Met Glu Cys Phe Phe Trp Ala Thr Leu Ile Thr Thr 1 5 10 15 Ile Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Tyr Asn Asp 20 25 30 Leu Ala Ala Leu Ala Asp Glu Ile Asp Lys Asp Lys Ser Pro Asn Ala 35 40 45 Ile Tyr Gln Tyr Gly Asp Gly Ile 50 55 9656PRTDahlia pinnata 96Arg Asp Arg Leu Leu Glu Cys Phe Phe Trp Ser Thr Phe Ile Thr Ile 1 5 10 15 Leu Asp Asp Ile Tyr Asp Phe Ser Val Ser Phe Arg Leu Tyr Asn Asp 20 25 30 Leu Ala Thr Ser Ser Ser Glu Ile Gln Arg Gly Lys Asn Val Asn Ala 35 40 45 Val Tyr Gln Tyr Gly Asp Gly His 50 55

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge