Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2016-Dec

Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
De link wordt op het klembord opgeslagen
Tomasz Czechowski
Tony R Larson
Theresa M Catania
David Harvey
Geoffrey D Brown
Ian A Graham

Sleutelwoorden

Abstract

Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for malaria currently available. We identified a mutation that disrupts the amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway. Detailed metabolic studies of cyp71av1-1 revealed that the consequence of blocking the artemisinin biosynthetic pathway is the redirection of sesquiterpene metabolism to a sesquiterpene epoxide, which we designate arteannuin X. This sesquiterpene approaches half the concentration observed for artemisinin in wild-type plants, demonstrating high-flux plasticity in A. annua glandular trichomes and their potential as factories for the production of novel alternate sesquiterpenes at commercially viable levels. Detailed metabolite profiling of leaf maturation time-series and precursor-feeding experiments revealed that nonenzymatic conversion steps are central to both artemisinin and arteannuin X biosynthesis. In particular, feeding studies using 13C-labeled dihydroartemisinic acid (DHAA) provided strong evidence that the final steps in the synthesis of artemisinin are nonenzymatic in vivo. Our findings also suggest that the specialized subapical cavity of glandular secretory trichomes functions as a location for both the chemical conversion and the storage of phytotoxic compounds, including artemisinin. We conclude that metabolic engineering to produce high yields of novel secondary compounds such as sesquiterpenes is feasible in complex glandular trichomes. Such systems offer advantages over single-cell microbial hosts for production of toxic natural products.

Word lid van onze
facebookpagina

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge