Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2018-Jun

Identification and structural characterization of a histidinol phosphate phosphatase from Mycobacterium tuberculosis.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
De link wordt op het klembord opgeslagen
Bhavya Jha
Deepak Kumar
Arun Sharma
Abhisek Dwivedy
Ramandeep Singh
Bichitra Kumar Biswal

Sleutelwoorden

Abstract

The absence of a histidine biosynthesis pathway in humans, coupled with histidine essentiality for survival of the important human pathogen Mycobacterium tuberculosis (Mtb), underscores the importance of the bacterial enzymes of this pathway as major antituberculosis drug targets. However, the identity of the mycobacterial enzyme that functions as the histidinol phosphate phosphatase (HolPase) of this pathway remains to be established. Here, we demonstrate that the enzyme encoded by the Rv3137 gene, belonging to the inositol monophosphatase (IMPase) family, functions as the Mtb HolPase and specifically dephosphorylates histidinol phosphate. The crystal structure of Rv3137 in apo form enabled us to dissect its distinct structural features. Furthermore, the holo-complex structure revealed that a unique cocatalytic multizinc-assisted mode of substrate binding and catalysis is the hallmark of Mtb HolPase. Interestingly, the enzyme-substrate complex structure unveiled that although monomers possess individual catalytic sites they share a common product-exit channel at the dimer interface. Furthermore, target-based screening against HolPase identified several small-molecule inhibitors of this enzyme. Taken together, our study unravels the missing enzyme link in the Mtb histidine biosynthesis pathway, augments our current mechanistic understanding of histidine production in Mtb, and has helped identify potential inhibitors of this bacterial pathway.

Word lid van onze
facebookpagina

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge